Engineering Transactions, 13, 1, pp. 117-130, 1965

Z Teorii Odkształceń Wielokrotnych Sprężysto-Plastycznych Ośrodka Stochastycznie Niejednorodnego (Betonu)

C. Eimer
Podstawowych Problemów Techniki PAN

This paper contains a description of a theory of load curves for any loading or unloading process and simultaneous occurrence of elastic and plastic strain. The theory is based on a statistical model composed of perfect elastic-plastic elements, the yield limit Q being variable according to a prescribed probability distribution. Equations are obtained  for any loading or unloading branch the form of which depends on the distribution of Q and can be adapted for any experimental diagram. An equation is given for the relative energy loss in a cycle due to internal friction (and approximately proportional to the logarithmic decrement of vibration), it being shown that it depends on the amplitude of vibration. Particular equations are obtained by assuming gamma or multipoint distribution. In the latter case the form of the curve can easily be related with the plastic properties of the medium (e. g. mortar and cement paste).

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).


R. BECKER, Zeitschrift für Physik, 33 (1925), 113.

C. EIMER, Reologiczna teoria wytrzymałości i jej zastosowanie do betonu, Rozpr. Inzyn., 4, 11 (1963).

T.T. C. HSU, F. O. SLATE, G. M. STURMAN, G. WINTER, Microcracking of plain concrete and the shape of the stress-strain curve, J. Amer. Concr. Inst., 2, 60 (1963).

R. KOWALCZYK, A. RÖSLI, Dynamische Versuche an der Glattbrücke in Opfikon, Schweizer Archiv, 2 (1963).

J. MURZEWSKI, Elastic-plastic stochastically non-homogeneous bodies, Symp. IUTAM Proc. 1958 (Warszawa), Non-Homogeneity in Elasticity and Plasticity, Pergamon Press 1959.

[in Russian]

W. PRAGER, P. G. HODGE, Theory of perfectly plastic solids, N. York 1951.

[in Russian]

WARTENBERG, Verh. Deutsch. Phys. Gesellschaft, 20 (1918), 113.