Engineering Transactions, 47, 3-4, pp. 369–387, 1999

Some Kinematically Admissible Velocity Fields in Multimaterial Extrusion

G.S. Mishuris
Rzeszów University of Technology

R.E. Śliwa
Rzeszów University of Technology

Two different models of flow fields are proposed to describe plastic deformations during the extrusion of multi-metal composites. To construct the presented kinematically admissible flow fields, some information is adopted from experimental works concerning extrusion of longitudially oriented metal composites. Formulae for velocities, strain-rate tensor and deviator of stresses are found.
Full Text: PDF


J.L. ALCARAZ, J.M. MARTINEZ-ESNAOLA and J. GIL-SEVILLANO, An analytical approach to the stress field in the extrusion of bimetallic tubes, Int. J. Solids Structures, 33, 14, 2075–2093, 1996.

J.L. ALCARAZ and J. GIL-SEVILLANO, An analysis of the extrusion of bimetallic tubes by numerical simulation, Int. J. Mech. Sci., 38, 2, 157–173, 1996.

J.L. ALCARAZ and J. GIL-SEVILLANO, Safety maps in bimetallic extrusions, Jour. Mat. Proc. Techn, 60, 133–140, 1996.

B. AVITZUR, R. Wu, S. TALBOT and Y.T. CHOU, Criterion for the prevention of core fracture during extrusion of bimetal rods, ASME J. Engng. Ind., 104, 293–304, 1982.

B. AVITZUR, Handbook of metal-forming processes, Wiley, New York 1983.

T.Z. BLAZYŃSKI [Ed.], Plasticity and modern metal-forming technology, Elsevier, London 1989.

M.S. GILDENDORN, Fundamental theory of simultaneous extrusion of metals and alloys of various mechanical features [in Russian], Mietallurgija, Moskwa 1981.

W. JOHNSON and P.B. MELLOR, Engineering plasticity, Ellis Horwood Ltd., Chichester 1986.

W.K. KOROL and M.S. GILDERDORN, Technological fundamentals of production of multilayer metals [in Russian], Mietallurgija, Moskwa 1970.

K. LAUE and H. STENGER, Extrusion, American Society for Metals, Metals Park, Ohio 1981.

H. LIPPMANN and H. ABSCHÄTZEN, Oberer und unterer Schranken für Umformungsleitungen und -Kräfte, besonders bei Strangpressen, Verlag Stahleisen, Düsseldorf 1966. Naturwissenschaften, 72, 633–639.

F. MAVUNDA and J. ZASADZIŃSKI, Dead zones in the process of direct extrusion of metals, Archiwum Hutnictwa, 28, 3, 359–403, 1983.

K. OSAKADA, M. LIMB and P.B. MELLOR, Int. J. Mech. Sci., 15, 291–307, 1973.

S.R. REID [Ed.], Metal forming and impact mechanics, Pergamon, Oxford 1985.

R.E. ŚLIWA, A test determining the ability of different materials to undergo simultaneous plastic deformation to produce metal composites, Mat. Sci. Engng., A 135, 259–265, 1991.

R.E. ŚLIWA, Plastic zones in the extrusion of metal composites, Jour. Mat. Proc. Techn., 67, 29–35, 1997.

R.E. ŚLIWA and G. MISHURIS, Modelling the plastic flow of composite materials in the extrusion process, Engng. Trans, 45, 2, 275–293, 1997.

R.E. ŚLIWA and G. MISHURIS, Modified flow field in the extrusion of bimetallic systems, Engng. Trans., 47, 2, 203–215, 1999.

R.E. ŚLIWA, Plastic zones in extrusion of longitudinally oriented metal composites, Proc. Conf. Mechanics of Solids and Materials Engineering, Singapore'95, A, 179–184, 1995.

H. TOKUNO and K. IKEDA, Analysis of deformation in extrusion of composite rods, Jour. Mat. Proc. Techn, 26, 323–335, 1991.

D.Y. YANG, H.S. KIM, C.M. LEE, C.H. HAN, Int. J. Mech. Sci., 32, 2, 115–127, 1990.

D.Y. YANG, H.S. KIM, C.M. LEE, CIRP Ann., 36, 1, 169–172, 1997.

DOI: 10.24423/engtrans.638.1999

Copyright © 2014 by Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, Poland