Engineering Transactions, 49, 2-3, pp. 359–374, 2001

Significance of Bioceramics for Bone Surgery

A. Ślósarczyk
University of Mining and Metallurgy
Poland

The paper presents ceramic implant materials used in orthopaedics, restorative dentistry, maxillofacial surgery and otholaryngology. In addition to oxide ceramics, also materials on the basis of calcium phosphates are presented, including composites with hydroxiapatite or TCP matrix. Possible types of behaviour of implantation materials and living tissues as well as resulting classification of biomaterials, subdivided into: nearly inert, bioactive and resorbable, are discussed. Attention was drawn to the most prospective directions of research studies of biomaterials for the future.
Keywords: bioceramics; implantation; bone substitution
Full Text: PDF

References

B.D. RATNER and A.S. HOFFMAN, Biomaterials science. An introduction to materials in medicine, Academic Press, 1996.

A. ŚLÓSARCZYK, Hydroxyapatite bioceramics [in Polish], Polish Acad. of Sci., Ceramics, 51, Cracow 1997.

A. RAVAGLIOLI, A. KRAJEWSKI, Bioceramics, [Ed.] Chapman and Hall, 1992.

ISO 6474-1981 (E) Implants for surgery – ceramic materials based on alumina.

J. Li, L. HERMANSSON, R. SOREMARK, High-strength biofunctional zirconia: mechanical properties and static fatigue behaviour of zirconia – apatite composites, J. Mater. Sci. Mater. in Med., 4, 50–54, 1993.

W. SUCHANEK, M. YOSHIMURA, Processing and properties of hydroxyapatite – based biomaterials for use as hard tissue replacement implants, J. Mater. Res., 13, No 1, 94–117, 1998.

M. AKAO, H. AOKI, Mechanical properties of sintered hydroxyapatite and tricalcium phosphate, Trans. of the First Symposium on Apatite, 16–24, Tokyo 1985.

H. AOKI, Science and medical applications of hydroxyapatite, JAAS, Tokyo 1996.

T. KIJIMA, M. TSUTSUMI, Preparation and thermal properties of dense polycrystalline oxyhydroxyapatite, J. Am. Ceram. Soc., 62, No 9–10, 455–460, 1979.

M. JARCHO, C.H. BOLEN, M.B. THOMAS, J. BOBICK, J.F. KAY, R.H. DOREMUS, Hydroxylapatite synthesis and characterisation in dense polycrystalline form, J. Mater. Sci., 11, 2027–2035, 1976.

P.E. WANG, T.K. CHAKI, Sintering behaviour and mechanical properties of hydroxyapatite and tricalcium phosphate, J. Mater. Sci. Mat. In Med., 4, 150–158, 1993.

K. HALOUANI, D. BERNACHE-ASSOLANT, E. CHAMPION, A. ABABON, Microstructure and related mechanical properties of hot pressed hydroxyapatite ceramics, J. Mater. Sci. Mat. in Med., 5, 563–568, 1994.

J. Li, B. FARTASH, L. HERMANSSON, High-strength ceramics with potential bioactivity, Interceram, 39, No 6, 20–23, 1990.

K. IOKU, M. YOSHIMURA, S. SOMIJA, Characterization of fine hydroxyapatite powders synthesized under hydrothermal conditions, Proc. of the IISS, Symp. Tokyo, 1308–1313, Japan 1987.

M. FABBRI, G.C. CELOTTI, A. RAVAGLIOLI, Hydroxyapatite based porous aggregates; physicochemical nature, structure and architecture, Biomaterials, 16, No 3, 225–228, 1995.

I.H. ARITA, D.S. WILKINSON, M.A. MONDRAGON, V.M. CASTANO, Chemistry and sintering behaviour of the hydroxyapatite ceramics with controlled porosity, Biomaterials, 16, No 5, 403–408, 1995.

A. ŚLÓSARCZYK, Hydroxyapatite material on the basis of polyurethane sponge, Powder Metallurgy International, 4, 24, 24–25, 1989.

L. HONG, X. HENGCHANG, K. de GROOT, Tensile strength of the interface between hydroxyapatite and bone, J. Biomed. Mat. Res., 26, 7–18, 1992.

K. de GROOT, Hydroxylapatite as coating for implants, Interceram, 4, 38–41, 1987.

C.S. KIM, P. DUCHEYNE, Compositional variations in the surface and interface of calcium phosphate ceramic coatings on Ti and Ti-6Al-4 V due to sintering and immersion, Biomaterials, 12, 461–469, 1991.

R. LE GEROS, J.P. LE GEROS, Y. KIM, C. BAUTISTA, Properties of coatings on dental and orthopedic implants from hydroxyapatite sources, Proc. of the Second Int. Sym. on Apatite, 3–7 July, Tokyo, Japan 1995.

H.G. PFAFF, G. WILLMANN, Properties of HA–coated prostheses and implants, Interceram., 43, No 2, 73–76, 1994.

G. BAUER, Biokeramik als Implantatwerkstoff für die Humanmedizin, Erlangen, Germany 1988.

Z. JIANGUO, Z. XINGDONG, C. MÜLLER-MAI, U. GROSS, The early host and material response of hydroxyapatite/tricalcium phosphate porous ceramics after implantation into the femur of rats, J. Mater. Sci. Mat. in Med., 5, 243–251, 1994.

J.D. SANTOS, J.C. KNOWLES, R. L. REIS, F. J. MONTEIRO, G. W. HASTINGS, Microstructural characterisation of glass – reinforced hydroxyapatite composites, Biomaterials, 15, No 1, 5–10, 1994.

J.G. de WITH, A.J. CORBIJN, Metal fibre reinforced hydroxyapatite ceramics, J. Mater. Sci., 24, 3411–3415, 1989.

K.S. TEN HUISEN, R.I. MARTIN, M. KLIMKIEWICZ, P. W. BROWN, Formation and properties of a synthetic bone composite: hydroxyapatite-collagen, J. Biomed. Mat. Res., 29, 803–807, 1995.

J. LI, B. FARTASH, L. HERMANSSON, Hydroxyapatite- alumina composites and bone bonding, Biomaterials, 16, No 5, 417–422, 1995.




Copyright © 2014 by Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, Poland