Engineering Transactions, 53, 2, pp. 185–196, 2005

New Designs for Graded Refractive Index Antireflection Coatings

A. MANDJOUB
Centre Universitaire L.Benmhidi
Algeria

L. ZIGHED
Universite de Skikda
Algeria

The constant progress in thin layers technology, especially the graded index inhomogeneous dielectrics, allows the realization of antireflection coatings (ARC) that are less sensitive to thickness and to the incidence angle. Graded refractive index silicon oxynitrides are deposited by Electron Cyclotron Resonance Plasma-Enhanced Chemical Vapour Deposition (ECR-PECVD) controlled in-situ by monochromatic ellipsometry. While avoiding the complexity of the classical multilayer ARCs, the obtained AR coatings permit to obtain the same performances, or furthermore to improve the cells efficiency. Different suggested profiles are optimized by simulation, then they are realized and characterized by spectroscopic ellipsometry and reflectance measurement. The photogenerated current can be enhanced by 45%, and weighted reflectance (between 300 and 1100 nm) reduced to 5.6%. The passivating properties of oxinitrides recommend the use of these AR coatings on texturized surfaces. The weighted reflectance would decrease to less than 1% and short-circuit current will thus be enhanced by 52.79%.
Keywords: AR coatings; oxinitrides; ellipsometry; graded refractive index
Full Text: PDF

References

K. CHOPRA, 3rd workshop on thin films physics and technology proceeding, 306–311, New Delhi 8–24 March, 1999.

D.J. AIKEN, Prog. Photovolt. Res. Appl, 8, 563–570, 2000.

J. ZHAO and M.A. GREEN, IEEE Trans. Electron. Devices, 38, 8, 1925–1934, 1991.

M.A. GREEN, Energy Policy, 28, 989–998, 2000.

D.S. RUBY, S.H. ZAIDI, S. YARANAYAN, B.M. DAMIANI and A. ROHATGI, Solar energy materials and solar cells, 74, 133–137, 2002.

V.Y. YEROKHOV, R. HEZEL, M. LIPINSKI, R. CIACH, H. NAGEL, A. MYLYANYCH and P. PANEK, Solar energy materials and solar cells, 72, 291–298, 2002.

B.S. RICHARDS, S.F. ROWLANDS, C.B. HONSBREG and J.E. COTTER, Prog. Photovolt. Res. Appl, 11, 27–33, 2003.

M.F. OUELLETTE, R.V. LANG, K.L. YAN, R.W. BERTRAM, R.S. OWLES and D. VINCENT, J. Vac. Sci. Technol. A, 9, 3, 1188–1192, 1991.

A. HAUSER, M. SPIEGEL, P. FATH and E. BOUCHER, Solar energy materials and solar cells, 75, 357–362, 2003.

P.L. SWART, P.V. BULKIN and B.M. LACQUET, Opt. Eng. 36 4, 1214–1219, 1997.

J.RIVORY, Thin solid films, 313–314, 333–340, 1998.

M. KILDEMO, Appl.Optics, 37, 1, 113–123, 1998.

S. GHOSH, P.K. DUTTA and D.N. BOSE, Mater. Sci. Semicond. Process, 2, 1–11, 1999.

K.J. PRICE, L.E. MC NEIL, A. SURKANOV, E.A. IRENE, P.J. MC FARLANE and M.E. ZVANUT, Appl. Opt. Phys, 86, 5, 1999.

S.H. LEE, I. LEE and J.Yi, Surf. Coat. Technol, 153, 67–71, 2002.

S. CALLARD, A. GAGNAIRE and J. JOSEPH, J. Vac. Sci. Technol. A 15, 4, 2088–2094, 1997.

P.V. BULKIN, P.L. SWART, B.M. LACQUET, J. Non–Crys. Sol., 187, 484–488, 1997.

M. BORN and E. WOLF, Principles of optics, Pergamon Press, 1970.

P. NUBILE, Thin solid films, 342, 257–261, 1999.

L. GAO and J.Z. GU, J.Phys. D Appl. Phys., 35, 267–271, 2002.

E.D. PALIK, Handbook of optical constants of solids, Academic Press Handbook Series, Orlando, 1985.

F. DUERINCKS and J. SZLUFCIK, Solar energy materials and solar cells, 72, 231–2146, 2002.

J. SCHMIDT, M. KERR and A. CUEVAS, Semicond. Sci. Technol, 16, 164–170, 2001

M. ORGERET, Les Piles solaires: Le composant et ses applications, Editions Masson, 1985.

A.G. ABERLE, Solar energy materials and solar cells, 65, 239–248, 2001.

X. WANG, H. MASUMOTO, Y. SOMENO and T. HIRAI, Thin solid films, 338, 105–109, 1999.




Copyright © 2014 by Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, Poland