Engineering Transactions, 62, 1, pp. 5-15, 2014

Thermodynamic Method for Measuring the B/A Nonlinear Parameter Under High Pressure

Piotr KIEŁCZYŃSKI
Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106, Warszawa, Poland
Poland

Marek SZALEWSKI
Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106, Warszawa, Poland

Andrzej BALCERZAK
Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106, Warszawa, Poland
Poland

Krzysztof WIEJA
Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106, Warszawa, Poland
Poland

Aleksander J. ROSTOCKI
Warsaw University of Technology Faculty of Physics Koszykowa 75, 00-662 Warszawa, Poland
Poland

Ryszard M. SIEGOCZYŃSKI
Warsaw University of Technology Faculty of Physics Koszykowa 75, 00-662 Warszawa, Poland

The nonlinearity parameter B/A is a measure of the nonlinearity of the equation of state for a fluid. The nonlinearity parameter B/A is a physical parameter often used in acoustics, from underwater acoustics to biology and medicine. It can provide information about structural properties of the medium, internal pressure and inter-molecular spacing. The thermodynamic method has been applied for determination of B/A parameter in diacylglycerol (DAG) oil as a function of pressure at various temperatures. Isotherms of the density and phase velocity of longitudinal ultrasonic wave as a function of pressure have been measured. Using the thermodynamic method along with measured isotherms of sound speed and density, the nonlinearity parameter B/A (for DAG oil) was evaluated as a function of pressure (up to 220 MPa) at various temperatures ranging from 20 to 50◦C.
Keywords: nonlinearity parameter B/A, thermodynamic method, high pressure, longitudinal ultrasonic wave velocity.
Full Text: PDF

References

Duck F.A., Nonlinear acoustics in diagnostic ultrasound, Ultrasound in Medicine and Biology, 28, 1, 1–18, 2002.

Liu X., Gong X., Yin C., Li J., Zhang D., Noninvasive estimation of temperature elevation in biological tissues using acoustic nonlinearity parameter imaging, Ultrasound in Medicine and Biology, 34, 3, 414–424, 2008.

Beyer R.T., Parameter of nonlinearity in fluids, J. Acoust. Soc Amer., 32, 719–721, 1960.

Zorębski E., Zorębski M., Acoustic nonlinearity parameter B/A determined by means of thermodynamic method under elevated pressure for alkanediols, Ultrasonics, 54, 1, 368–374, 2014.

Beyer R.T., The parameter B/A, in Nonlinear Acoustics, M.F. Hamilton and D.T. Blackstock [Eds.], Academic Press, New York, 1998.

Khelladi H., Plantier F., Daridon J.L., Djelouah H., Measurement under high pressure of the nonlinearity parameter B/A in glycerol at various temperatures, Ultrasonics, 49, 668–675, 2009.

Coppens A.B., Beyer R.T., Seiden M.B., Donohue J., Guepin F., Hodson R.H., Townsend Ch., Parameter of nonlinearity in fluids, Journal of the Acoustical Society of America, 37, 797–804, 1965.

Zhu Z., Roos M.S., Cobb W.N., Jensen K., Determination of the acoustic nonlinearity parameter B/A from phase measurements, Journal of the Acoustical Society of America, 87, 5, 797–804, 1983.

Adler L., Hiedemann E.A., Determination of the nonlinearity parameter B/A for water and m-Xylene, J. Acoust. Soc Amer., 34, 410–412, 1962.

Law W.K., Frizzell L.A., Dunn F., Comparison of thermodynamic and finite amplitude methods of B/A measurement in biological materials, J. Acoust. Soc. Amer., 74, 1295–1297, 1983.

Shimizu M., Kudo N., Nakajima N., Matsuo Y., Katsaragi I., Tokimitsu I., Barcelo I., Mateu C., Barcelo F., Acidity and DAG content of olive oil recently produced on the Island of Mallorca, Journal of the American Oil Chemists’ Society, 85, 11, 1051–1056, 2008.

Lo S.K., Tan C.P., Long K., Yusoff M.S.A., Lai O.M., Diacylglycerol oil – properties, processes and products: A review, Food Bioprocess. Technol., 1, 223–233, 2008.

Rostocki A.J., Siegoczyński R.M., Kiełczyński P., Szalewski M., Balcerzak A., Zduniak M., Employment of a novel ultrasonic method to investigate high pressure phase transitions in oleic acid, High Press. Res., 31, 334–338, 2011.

Kiełczyński. P., Szalewski M., Rostocki A.J., Zduniak M., Siegoczyński R.M., Balcerzak A., Investigation of high-pressure phase transitions in vegetable oils by measuring phase velocity of longitudinal ultrasonic waves, IEEE Intern. Ultrason. Symp. Proc., pp. 1563–1566, Rome 2009.

Sugasawa S., Time difference measurement of ultrasonic pulses using cross-correlation function between analytic signals, Japanese Journal of Applied Physics, 41, 3299–3307, 2002.

Kiełczyński P., Szalewski M., Balcerzak A., Malanowski A.,

Siegoczyński R.M., Ptasznik S., Investigation of high-pressure phase transitions in DAG (diacylglycerol) oil using the Bleustein-Gulyaev ultrasonic wave method, Food Res. Int., 49, 60–64, 2012.

Seghal C.M., Non-linear ultrasonics to determine molecular properties of pure liquids, Ultrasonics, 33, 155–161, 1995.

Lu Y., Feng J., Danwu Y., Tong J., Computation of the acoustic nonlinearity parameter in organic liquid binary mixtures, Chinese Science Bull., 45, 414–417, 2000.

Oakley B.A., Barber G., Worden T., Hanna D., Ultrasonic parameters as a function of absolute hydrostatic pressure, Journal of Physical and Chemical Reference Data, 32, 4, 1501–1544, 2003.




Copyright © 2014 by Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, Poland