Performance of a Hybrid Ichthyoid-Waterjet Articulated Propulsor

Downloads

Authors

  • Tomasz SZMIDT Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland ORCID ID 0000-0002-2676-1882

Abstract

The concept of a bioinspired ichthyoid-waterjet propulsor for autonomous underwater vehicles (AUVs) is investigated. The propulsor consists of an articulated fluid-conveying pipe with a propulsive fin at the end. Water drawn into the hull is accelerated to a supercritical velocity, which yields flutter vibrations of the propulsor resembling the motion of a swimming fish. The fin acts on the surrounding water and generates thrust. At the same time, the ejected water produces recoil. Using the proposed dynamical model, three types of propulsors for different swimming speeds are investigated. At low swimming speeds, the propulsive force generated by the propulsors can be up to 30% higher than the thrust of a conventional waterjet propulsor with the same physical parameters. However, this advantage in the generated thrust decreases with the swimming speed increase. The results are obtained by analyzing the approximation of the bifurcating solution and numerical simulations of the differential equation governing the dynamics.

Keywords:

autonomous underwater vehicle, waterjet propulsion, fish swimming, flutter, fluid-conveying pipe

References


  1. Algar´in-Pinto J.A., Garza-Casta˜non L.E., Vargas-Martinez A., Minchala-Avila L.I., Dynamic modeling and control of a parallel mechanism used in the propulsion system of a biomimetic underwater vehicle, Applied Sciences, 11(11): 4909, 2021, https://doi.org/10.3390/app11114909

  2. Bayat B., Crespi A., Ijspeert A., Envirobot: A bio-inspired environmental monitoring platform, [in:] 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), pp. 381–386, 2016, https://doi.org/10.1109/AUV.2016.7778700

  3. Benjamin T.B., Dynamics of a system of articulated pipes conveying fluid. I. Theory, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 261(1307): 457–486, 1961, https://doi.org/10.1098/rspa.1961.0090

  4. Benjamin T.B., Dynamics of a system of articulated pipes conveying fluid. II. Experiments, Proceedings of the Royal Society of London. Series A., Mathematical and Physical Sciences, 261(1307): 487–499, 1961, https://doi.org/10.1098/rspa.1961.0091

  5. Clapham R.J., Hu H., iSplash: Realizing fast carangiform swimming to outperform a real fish, [in:] Robot Fish. Springer Tracts in Mechanical Engineering, Du R., Li Z., Youcef-Toumi K., Valdivia y Alvarado P. [Eds], pp. 193–218, Springer, Berlin, Heidelberg, 2015, https://doi.org/10.1007/978-3-662-46870-8 7.

  6. Ebrahimi A., Razaghian A., Seif M., Zahedi F., Nouri-Borujerdi A., A comprehensive study on noise reduction methods of marine propellers and design procedures, Applied Acoustics, 150: 55–69, 2019, https://doi.org/10.1016/j.apacoust.2018.12.004

  7. Elishakoff I., Controversy associated with the so-called “follower forces”: Critical overview, Applied Mechanics Reviews, 58(2): 117–142, 2005, https://doi.org/10.1115/1.1849170

  8. Fish F., Lauder G., Not just going with the flow, American Scientist, 101(2): 114–123, 2013, https://bpb-us-e1.wpmucdn.com/sites.harvard.edu/dist/6/58/files/2022/03/Fish.Lauder.2013.pdf

  9. Fish F.E., Advantages of natural propulsive systems, Marine Technology Society Journal, 47(5): 37–44, 2013, https://doi.org/10.4031/MTSJ.47.5.2

  10. Hellum A., Mukherjee R., B´enard A., Hull A.J., Modeling and simulation of the dynamics of a submersible propelled by a fluttering fluid-conveying tail, Journal of Fluids and Structures, 36: 83–110, 2013, https://doi.org/10.1016/j.jfluidstructs.2012.08.006

  11. Hellum A., Mukherjee R., Hull A.J., Flutter instability of a fluid-conveying fluid-immersed pipe affixed to a rigid body, Journal of Fluids and Structures, 27(7): 1086–1096, 2011, https://doi.org/10.1016/j.jfluidstructs.2011.03.002

  12. Hellum A.M., Strefling P.C., Mukherjee R., Maneuvering and control of a synergistically propelled ichthyoid, [in:] Proceedings of the ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference, 2: 187–193, 2012, https://doi.org/10.1115/DSCC2012-MOVIC2012-8680

  13. Iooss G., Joseph D., Elementary Stability and Bifurcation Theory, 2nd ed., Springer, New York, 2012, https://doi.org/10.1007/978-1-4612-0997-3

  14. Jaya A.S., Kartidjo M.W., Thrust and efficiency enhancement scheme of the fin propulsion of the biomimetic autonomous underwater vehicle model in low-speed flow regime, Ocean Engineering, 243: 110090, 2022, https://doi.org/10.1016/j.oceaneng.2021.110090

  15. Li G., Liu G., Leng D., Fang X., Li G., Wang W., Underwater undulating propulsion biomimetic robots: A review, Biomimetics, 8(3): 318, 2023, https://doi.org/10.3390/biomimetics8030318

  16. Li J., Li W., Liu Q., Luo B., Cui W., Current status and technical challenges in the development of biomimetic robotic fish-type submersible, Ocean-Land-Atmosphere Research, 3: 0036, 2024, https://doi.org/10.34133/olar.0036

  17. Li J., Ma L., Chen D., Qi Y., Bai T., Pan G., Comparative study of hydrodynamic performance of submerged water jet propeller and conventional propeller under multiple operating conditions, Machines, 13(2): 147, 2025, https://doi.org/10.3390/machines13020147

  18. Li Y., Xu Y., Wu Z., Ma L., Guo M., Li Z., Li Y., A comprehensive review on fish-inspired robots, International Journal of Advanced Robotic Systems, 19(3): 17298806221103707, 2022, https://doi.org/10.1177/17298806221103707

  19. Liang J., Wang T., Wen L., Development of a two-joint robotic fish for real-world exploration, Journal of Field Robotics, 28(1): 70–79, 2011, https://doi.org/10.1002/rob.20363

  20. Lighthill J., Aquatic animal locomotion, [in:] Proceedings of the 13th International Congress of Theoretical and Applied Mechanics, Becker E., Mikhailov G.K. [Eds], pp. 29–46, Springer, Berlin, Heidelberg, 1973, https://doi.org/10.1007/978-3-642-65590-6_3

  21. Lighthill M.J., Note on the swimming of slender fish, Journal of Fluid Mechanics, 9(2): 305–317, 1960, https://doi.org/10.1017/S0022112060001110

  22. Lighthill M.J., Aquatic animal propulsion of high hydromechanical efficiency, Journal of Fluid Mechanics, 44(2): 265–301, 1970, https://doi.org/10.1017/S0022112070001830

  23. Lighthill M.J., Large-amplitude elongated-body theory of fish locomotion, Proceedings of the Royal Society of London. Series B. Biological Sciences, 179(1055): 125–138, 1971, https://doi.org/10.1098/rspb.1971.0085

  24. Liu T., Qiu J., Geng H., Cai Y., Wang Z., Tao J., Underwater radiated noise characteristics: A comparative study of immersed and traditional waterjet propulsion systems, Science Progress, 108(2): 00368504251336888, 2025, https://doi.org/10.1177/00368504251336888

  25. Maertens A., Triantafyllou M.S., Yue D.K., Efficiency of fish propulsion, Bioinspiration & Biomimetics, 10(4): 046013, 2015, https://doi.org/10.1088/1748-3190/10/4/046013

  26. Mason R., Burdick J., Experiments in carangiform robotic fish locomotion, [in:] Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 1: 428–435, 2000, https://doi.org/10.1109/ROBOT.2000.844093

  27. Masoomi S.F., Gutschmidt S., Gaume N., Guillaume T., Eatwel C., Chen X., Sellier M., Design and construction of a specialised biomimetic robot in multiple swimming gaits, International Journal of Advanced Robotic Systems, 12(11): 168, 2015, https://doi.org/10.5772/60547

  28. Neira J., Sequeiros C., Huamani R., Machaca E., Fonseca P., Nina W., Review on unmanned underwater robotics, structure designs, materials, sensors, actuators, and navigation control, Journal of Robotics, 2021(1): 5542920, 2021, https://doi.org/10.1155/2021/5542920

  29. Omelyanyuk M., Ukolov A., Pakhlyan I., Bukharin N., El Hassan M., Experimental and numerical study of cavitation number limitations for hydrodynamic cavitation inception prediction, Fluids, 7(6): 198, 2022, https://doi.org/10.3390/fluids7060198

  30. Paidoussis M.P., Hydroelastic ichthyoid propulsion, Journal of Hydronautics, 10(1): 30–32, 1976, https://doi.org/10.2514/3.63050

  31. Paidoussis M.P., Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 1, ed. 2, Academic Press, UK, 2014.

  32. Paidoussis M.P., Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 2, ed. 2, Academic Press, UK, 2016.

  33. Petritoli E., Leccese F., Autonomous underwater glider: A comprehensive review, Drones, 9(1): 21, 2025, https://doi.org/10.3390/drones9010021

  34. Schouveiler L., Chermette F., Flutter instability of freely hanging articulated pipes conveying fluid, Physics of Fluids, 30(3): 034105, 2018, https://doi.org/10.1063/1.5021160

  35. Sfakiotakis M., Lane D., Davies J., Review of fish swimming modes for aquatic locomotion, IEEE Journal of Oceanic Engineering, 24(2): 237–252, 1999, https://doi.org/10.1109/48.757275

  36. Smits A.J., Undulatory and oscillatory swimming, Journal of Fluid Mechanics, 874: P1, 2019, https://doi.org/10.1017/jfm.2019.284

  37. Strefling P.C., Hellum A.M., Mukherjee R., Modeling, simulation, and performance of a synergistically propelled ichthyoid, IEEE/ASME Transactions on Mechatronics, 17(1): 36–45, 2011, https://doi.org/10.1109/IROS.2011.6094934

  38. Struebig K., Bayat B., Eckert P., Looijestijn A., Lueth T.C., Ijspeert A.J., Design and development of the efficient anguilliform swimming robot – MAR, Bioinspiration & Biomimetics, 15(3): 035001, 2020, https://doi.org/10.1088/1748-3190/ab6be0

  39. Sugiyama Y., Noda T., Studies on stability of two-degree-of-freedom articulated pipes conveying fluid: Effect of an attached mass and damping, Bulletin of JSME, 24(194): 1354–1362, 1981, https://doi.org/10.1299/jsme1958.24.1354

  40. Szmidt T., Dynamics of a flutter-excited articulated ichthyoid propulsor, Meccanica, 60(4): 1035–1052, 2025, https://doi.org/10.1007/s11012-025-01974-8

  41. Szmidt T., Przybyłowicz P., Critical load and non-linear dynamics of Beck’s column with electromagnetic actuators, International Journal of Non-Linear Mechanics, 67: 63–73, 2014, https://doi.org/10.1016/j.ijnonlinmec.2014.08.002

  42. Triantafyllou M.S., Triantafyllou G.S., An efficient swimming machine, Scientific American, 272(3): 64–70, 1995, http://www.jstor.org/stable/24980373

  43. Videler J.J., Fish swimming, Springer, Dordrecht, 1993, https://doi.org/10.1007/978-94-011-1580-3

  44. Yu J., Wang L., Parameter optimization of simplified propulsive model for biomimetic robot fish, [in:] Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 3306–3311, IEEE, 2005, https://doi.org/10.1109/ROBOT.2005.1570620

  45. Zhong Y., Li Z., Du R., A novel robot fish with wire-driven active body and compliant tail, IEEE/ASME Transactions on Mechatronics, 22(4): 1633–1643, 2017, https://doi.org/10.1109/TMECH.2017.2712820

  46. Zhou J., Si Y., Chen Y., A review of subsea AUV technology, Journal of Marine Science and Engineering, 11(6): 1119, 2023, https://doi.org/10.3390/jmse11061119