The Development of Green Polylactic Acid (PLA)Composites for Wastewater Treatment – A Review

Downloads

Authors

Abstract

Polylactic acid (PLA) is a biodegradable polyester derived from renewable resources, recognized for its environmental sustainability and versatile properties. Its applications spam the biomedical, textile, and packaging industries and, more recently, wastewater treatment. This review explores recent advancements in the use of PLA and its composites for wastewater treatment, emphasizing their effectiveness, modification techniques to enhance performance, and future research directions. A thorough literature review was conducted, covering the past decade studies, and, including research articles, reviews, and case studies on PLA’s application in wastewater treatment and comparative performance against other adsorbents. Although PLA’s natural adsorption capacity is limited, it has demonstrated significant potential for removing contaminants such as heavy metals, organic dyes, and other organic pollutants. Various modifications, including surface chemical changes, physical blending with nanomaterials, and more, have notably improved its adsorption performance. Modified PLA composites thus present a viable and sustainable solution for wastewater treatment. Continued research is essential to further optimize these modifications, explore novel composite materials, develop scalable technologies, and assess long-term environmental impacts. This review offers a critical synthesis of current knowledge on PLA-based materials in wastewater treatment, aiming to inform and guide future research in sustainable water purification technologies.

Keywords:

polylactic acid , PLA, wastewater treatment, adsorbents, adsorption, PLA composites, environmental sustainability

References


  1. Yadav N., Nain L., Khare S.K., Studies on the degradation and characterization of a novel metal-free polylactic acid synthesized via lipase-catalyzed polymerization: A step towards curing the environmental plastic issue, Environmental Technology & Innovation, 24: 101845, 2021, https://doi.org/10.1016/j.eti.2021.101845

  2. Liparoti S., Iozzino V., Speranza V., Pantani R., Modulating poly(lactic acid) degradation rate for environmentally sustainable applications, Waste Management, 175: 215–224, 2024, https://doi.org/10.1016/j.wasman.2024.01.004

  3. Wang J., Modification and applications of polylactic acid, Highlights in Science, Engineering and Technology, 84: 14–18, 2024, https://doi.org/10.54097/6syqkz26

  4. Ferreira P.S., Ribeiro S.M., Pontes R., Nunes J., Production methods and applications of bioactive polylactic acid: A review, Environmental Chemistry Letters, 22: 1831–1859, 2024, https://doi.org/10.1007/s10311-024-01729-z

  5. Vakati S.R., Vanderlaan G., Gacura M.D., Ji X., Chen L., Piovesan D., Synthesis of poly-lactic acid by ring open polymerization from beer spent grain for drug delivery, Polymers (Basel), 16: 483, 2024, https://doi.org/10.3390/polym16040483

  6. Widjaja T., Hendrianie N., Nurkhamidah S., Altway A., Yusuf B., F. F., Rohma A.A.Z., Pahlevi A., Poly lactic acid production using the ring opening polymerization (ROP) method using Lewis acid surfactant combined iron (Fe) catalyst (Fe(DS)3), Heliyon, 9(8): e17985, 2023, https://doi.org/10.1016/j.heliyon.2023.e17985

  7. Wu Y., Gao X., Wu J., Zhou T., Nguyen T.T., Wang Y., Biodegradable polylactic acid and its composites: Characteristics, processing, and sustainable applications in sports, Polymers (Basel), 15: 3096, 2023, https://doi.org/10.3390/polym15143096

  8. Giammaria V., Capretti M., Del Bianco G., Boria S., Santulli C., Application of poly(lactic acid) composites in the automotive sector: A critical review, Polymers (Basel), 16: 3059, 2024, https://doi.org/10.3390/polym16213059

  9. Hussain M., Khan S.M., Shafiq M., Abbas N., A review on PLA-based biodegradable materials for biomedical applications, Giant, 18: 100261, 2024, https://doi.org/10.1016/j.giant.2024.100261

  10. Khouri N.G., Bahú J.O., Blanco-Llamero C., Severino P., Concha V.O.C., Souto E.B., Polylactic acid (PLA): Properties, synthesis, and biomedical applications – A review of the literature, Journal of Molecular Structure, 1309: 138243, 2024, https://doi.org/10.1016/j.molstruc.2024.138243

  11. Yang Y., Zhang M., Ju Z., Tam P.Y., Hua T., Younas M.W., Kamrul H., Hu H., Poly(lactic acid) fibers, yarns and fabrics: Manufacturing, properties and applications, Textile Research Journal, 91(13–14): 1641–1669, 2021, https://doi.org/10.1177/0040517520984101

  12. Pandey A.K., Sirohi R., Upadhyay S., Mishra M., Kumar V., Singh L.K., Pandey A., Production and applications of polylactic acid, [in:] Binod P., Raveendran S., Pandey A. [Eds.], Biomass, Biofuels, Biochemicals. Biodegradable Polymers and Composites – Process Engineering to Commercialization, Elsevier, pp. 309–357, 2021, https://doi.org/10.1016/B978-0-12-821888-4.00013-7

  13. Swetha T.A., Bora A., Mohanrasu K., Balaji P., Raja R., Ponnuchamy K., Muthusamy G., Arun A., A comprehensive review on polylactic acid (PLA) – Synthesis, processing and application in food packaging, International Journal of Biological Macromolecules, 234: 123715, 2023, https://doi.org/10.1016/j.ijbiomac.2023.123715

  14. da Silva P.C.J., Klug T.V., Stoll L., Izidoro F., Flores S.H., De Oliveira Rios A., Poly (lactic acid) and its improved properties by some modifications for food packaging applications: A review, Food Packaging and Shelf Life, 41: 101230, 2024, https://doi.org/10.1016/j.fpsl.2023.101230

  15. Andrzejewski J., Das S., Lipik V., Mohanty A.K., Misra M., You X., Tan L.P., Chang B.P., The development of poly(lactic acid) (PLA)-based blends and modification strategies: methods of improving key properties towards technical applications – Review, Materials (Basel), 17: 4556, 2024, https://doi.org/10.3390/ma17184556

  16. Hu C., Zhang Y., Pang X., Chen X., Poly(lactic acid): Recent stereochemical advances and new materials engineering, Advanced Materials, 37(22): 2412185, 2024, https://doi.org/10.1002/adma.202412185

  17. Milovanovic S., Markovic D., Pantic M., Pavlovic S.M., Knapczyk-Korczak J., Stachewicz U., Novak Z., Development of advanced floating poly(lactic acid)-based materials for colored wastewater treatment, The Journal of Supercritical Fluids, 177: 105328, 2021, https://doi.org/10.1016/j.supflu.2021.105328

  18. Manewal S., Patadiya J., Kandasubramanian B., Mahajan-Tatpate P., Additive manufactured membranes of polylactic acid for effluent treatment, Polymer-Plastics Technology and Materials, 62: 1587–1609, 2023, https://doi.org/10.1080/25740881.2023.2222825  

  19. Darwin, Triovanta U., Rinaldi R., Two-stage anaerobic co-digestion of landfill leachate and starch wastes using anaerobic biofilm reactor for methane production, Progress in Agricultural Engineering Sciences, 15(1): 53–70, 2019, https://doi.org/10.1556/446.15.2019.1.4

  20. Darwin, Diana N., Mardhotillah, Pratama A., Anaerobic co-digestion of cow manure and palm oil mill effluent (POME): Assessment of methane production and biodegradation efficiency, International Journal of Design & Nature and Ecodynamics, 16(6): 671–676, 2021, https://doi.org/10.18280/ijdne.160608

  21. Darwin, Pratama A., Mardhotillah, Organic waste conversion via continuous anaerobic co-digestion of oil palm empty fruit bunches and cow manure: Evaluation of feeding regime on methane production, Acta Technologica Agriculturae, 24(1): 8–13, 2021, https://doi.org/10.2478/ata-2021-0002

  22. Darwin, Ilham M., Fazil A., Performance and kinetic study of the anaerobic co-digestion of cocoa husk and digested cow manure with high organic loading rate, INMATEH – Agricultural Engineering, 55(2): 131–140, 2018.

  23. Okoro H.K., Orosun M.M., Oriade F.A., Momoh-Salami T.M., Ogunkunle C.O., Adeniyi A.G., Zvinowanda C., Ngila J.C., Potentially toxic elements in pharmaceutical industrial effluents: A review on risk assessment, treatment, and management for human health, Sustainability, 15: 86974, 2023, https://doi.org/10.3390/su15086974

  24. Darwin, Mardhotillah, Pratama A. Anaerobic co-digestion of oil palm frond waste with cow manure for biogas production: influence of a stepwise organic loading on the methane productivity, Bulletin of the Transilvania University of Brasov, Series II: Forestry, Wood Industry, Agricultural Food Engineering, 14(63)(2): 99–112, 2021, https://doi.org/10.31926/but.fwiafe.2021.14.63.2.9

  25. Thuan N.C., Phat V.V., Thai Hang T.T., Luu L.E.T., Tripple J., Wagner M., Treatment of seafood processing wastewater toward carbon neutrality: A comparison between coagulation/flocculation, chemical oxidation and absorbent methods, Case Studies in Chemical and Environmental Engineering, 10: 100792, 2024, https://doi.org/10.1016/j.cscee.2024.100792

  26. Jo S., Kadam R., Jang H., Seo D., Park J., Recent advances in wastewater electrocoagulation technologies: Beyond chemical coagulation, Energies, 17: 5863, 2024, https://doi.org/10.3390/en17235863

  27. Aryanti P.T.P., Nugroho F.A., Anwar N., Rusgiyarto F., Phalakornkule C., Kadier A., Integrated bipolar electrocoagulation and PVC-based ultrafiltration membrane process for palm oil mill effluent (POME) treatment, Chemosphere, 347: 140637, 2024, https://doi.org/10.1016/j.chemosphere.2023.140637

  28. Shah A.A., Walia S., Kazemian H., Advancements in combined electrocoagulation processes for sustainable wastewater treatment: A comprehensive review of mechanisms, performance, and emerging applications, Water Research, 252: 121248, 2024, https://doi.org/10.1016/j.watres.2024.121248

  29. Al-Qodah Z., Al-Zghoul T.M., Jamrah A., The performance of pharmaceutical wastewater treatment system of electrocoagulation assisted adsorption using perforated electrodes to reduce passivation, Environmental Science and Pollution Research, 31: 20434–20448, 2024, https://doi.org/10.1007/s11356-024-32458-z

  30. Faraj H., Jamrah A., Al-Omari S., Al-Zghoul T.M., Optimization of an electrocoagulation-assisted adsorption treatment system for dairy wastewater, Case Studies in Chemical and Environmental Engineering, 9: 100574, 2024, https://doi.org/10.1016/j.cscee.2023.100574

  31. Madeira L., Carvalho F., Almeida A., Ribau Teixeira M., Integrated process of immediate one-step lime precipitation, atmospheric carbonation, constructed wetlands, or adsorption for industrial wastewater treatment: A review, Water, 15(22): 3929, 2023, https://doi.org/10.3390/w15223929

  32. Jin H., Yu Y., Chen X., Electrochemical precipitation for water and wastewater treatment, Process Safety and Environmental Protection, 184: 1011–1016, 2024, https://doi.org/10.1016/j.psep.2024.02.044

  33. Chen H., Hou D., Zhan L., Li Z., Zheng S., Li F., Chen H., Wu H., Yang L., A demonstration project for desulfurization wastewater evaporation technology: Field test and performance analysis, Journal of Water Process Engineering, 53: 103874, 2023, https://doi.org/10.1016/j.jwpe.2023.103874

  34. Wang Y., Zhan L., Chen H., Mao J., Chen H., Ma X., Yang L., Study on the evaporation performance of concentrated desulfurization wastewater and its products analysis, Journal of Water Process Engineering, 58: 104862, 2024, https://doi.org/10.1016/j.jwpe.2024.104862

  35. Oturan N., Oturan M.A., Fenton-related advanced oxidation processes (AOPs) for water treatment, [in:] Jlassi K., Oturan M.A., Ismail A.F., Chehimi M.M. [Eds.], Advanced Materials for Wastewater Treatment, Cham: Springer International Publishing, pp. 117–143, 2024, https://doi.org/10.1007/978-3-031-48228-1_9

  36. Darwin, Pratama A., Mardhotillah, Biodiesel production from waste frying oils by potassium methoxide supported on activated carbon catalysts from lignocellulosic biomass, Acta Technologica Agriculturae, 24(4): 153–158, 2021, https://doi.org/10.2478/ata-2021-0026

  37. Darwin D., Rapid determination of lactic acid in anaerobic biological treatment process using a portable sensitive lactate biosensor, Biotechnologia, 100(2): 115–120, 2019, https://doi.org/10.5114/bta.2019.85320">https://doi.org/10.5114/bta.2019.85320.

  38. Darwin, Determination of glucose concentration in anaerobic acidification cultures by portable glucose monitoring system, Asian Journal of Chemistry, 31(4): 763–766, 2019, https://doi.org/10.14233/ajchem.2019.21593">https://doi.org/10.14233/ajchem.2019.21593.

  39. Nthwane Y.B., Fouda-Mbanga B.G., Thwala M., Pillay K., A comprehensive review of heavy metals (Pb2+, Cd2+, Ni2+) removal from wastewater using low-cost adsorbents and possible revalorisation of spent adsorbents in blood fingerprint application, Environmental Technology, 46(3): 414–430, 2025, https://doi.org/10.1080/09593330.2024.2358450

  40. Lichtmannegger T., Hell M., Wehner M., Ebner C., Bockreis A., Seasonal tourism’s impact on wastewater composition: Evaluating the potential of alternating activated adsorption in primary treatment, Science of the Total Environment, 926: 171869, 2024, https://doi.org/10.1016/j.scitotenv.2024.171869

  41. Ghosh S., Malloum A., Bornman C., Othmani A., Osagie C., Esfahani Z.K., Khanday W.A., Ahmadi S., Dehghani M.H., Novel green adsorbents for removal of aniline from industrial effluents: A review, Journal of Molecular Liquids, 345: 118167, 2022, https://doi.org/10.1016/j.molliq.2021.118167

  42. Kurniawan T.A., Lo W-H., Liang X., Goh H.H., Othman M.H.D., Chong K-K., Mohyuddin A., Kern A.O., Chew K.W., Heavy metal removal from aqueous solutions using biomaterials and/or functional composites: Recent advances and the way forward in wastewater treatment using digitalization. Journal of Composites Science, 7(2): 84, 2023, https://doi.org/10.3390/jcs7020084

  43. Fathana H., Rahmi R., Adlim M., Lubis S., Modification of chitosan using glycidyl methacrylate-grafted cellulose (GMAgCell/Chi) for methylene blue adsorption, Karbala International Journal of Modern Science, 9: 687–697, 2023, https://doi.org/10.33640/2405-609X.3322

  44. Rahmi, Zulasma M.A., Lelifajri, Kacaribu A.A., Preparation of chitosan-glycidyl methacrylate grafted rice straw cellulose (Chi/GMAgCell) composite film for cadmium ions removal from water, International Journal of Design & Nature and Ecodynamics, 20(3): 515–522, 2025, https://doi.org/10.18280/ijdne.200306

  45. Fathana H., Rahmi, Adlim M., Lubis S., Iqhrammullah M., Sugarcane bagasse-derived cellulose as an eco-friendly adsorbent for azo dye removal, International Journal of Design & Nature and Ecodynamics, 18(1): 11–20, 2023, https://doi.org/10.18280/ijdne.180102

  46. Azimi B., Sepahvand S., Ismaeilimoghadam S., Kargarzadeh H., Ashori A., Jonoobi M., Danti S., Application of cellulose-based materials as water purification filters; A state-of-the-art review. Journal of Polymers and the Environment, 32: 345–366, 2024, https://doi.org/10.1007/s10924-023-02989-6

  47. Liang H., Wu H., Fang W., Ma K., Zhao X., Geng Z., She D., Hu H., Two-stage hydrothermal oxygenation for efficient removal of Cr(VI) by starch-based polyporous carbon: Wastewater application and removal mechanism, International Journal of Biological Macromolecules, 264: 130812, 2024, https://doi.org/10.1016/j.ijbiomac.2024.130812

  48. Costa T.B., Matias P.M.C., Sharma M., Murtinho D., Rosa D.S., Valente A.J.M., Recent advances on starch-based adsorbents for heavy metal and emerging pollutant remediation, Polymers, 17(1): 15, 2025, https://doi.org/10.3390/polym17010015

  49. Yadav K.K., Cabral-Pinto M.M.S., Gacem A., Fallatah A.M., Ravindran B., Rezania S., Algethami J.S., Eltayeb L.B., Abbas M., Al-shareef T.H., Vinayak V., Son C.T., Alreshidi M.A., Rodríguez-Díaz J.M., Homod R.Z., Recent advances in the application of nanoparticle-based strategies for water remediation as a novel clean technology – A comprehensive review, Materials Today Chemistry, 40: 102226, 2024, https://doi.org/10.1016/j.mtchem.2024.102226

  50. Tripathy J., Mishra A., Pandey M., Thakur R.R., Chand S., Rout P.R., Shahid M.K., Advances in nanoparticles and nanocomposites for water and wastewater treatment: A review, Water, 16(11): 1481, 2024, https://doi.org/10.3390/w16111481

  51. Thomas M.S., Pillai P.K.S., Faria M., Cordeiro N., Kailas L., Kalarikkal N., Thomas S., Pothen L.A., Polylactic acid/nano chitosan composite fibers and their morphological, physical characterization for the removal of cadmium(II) from water, Journal of Applied Polymer Science, 137: 48993, 2020, https://doi.org/10.1002/app.48993

  52. Cairone S., Hegab H.M., Khalil H., Nassar L., Wadi V.S., Naddeo V., Hasan S.W., Novel eco-friendly polylactic acid nanocomposite integrated membrane system for sustainable wastewater treatment: Performance evaluation and antifouling analysis, Science of the Total Environment, 912: 168715, 2024, https://doi.org/10.1016/j.scitotenv.2023.168715

  53. Dong Y., Ghasemzadeh M., Khorsandi Z., Sheibani R., Nasrollahzadeh M., Starch-based hydrogels for environmental applications: A review, International Journal of Biological Macromolecules, 269: 131956, 2024, https://doi.org/10.1016/j.ijbiomac.2024.131956

  54. Younes M.K., Algburi S., Al Omari R.H., Abdulhameed A.S., Application of chitosan/acid-treated biomass composite for dye wastewater treatment: Adsorption modeling using Box-Behnken Design, Desalination and Water Treatment, 320: 100795, 2024, https://doi.org/10.1016/j.dwt.2024.100795

  55. Abdulhameed A.S., Khan M.K.A., Alshahrani H., Younes M.K., Algburi S., Newly developed polymer nanocomposite of chitosan-citrate/ZrO2 nanoparticles for safranin O dye adsorption: Physiochemical properties and response surface methodology, Materials Chemistry and Physics, 324: 129699, 2024, https://doi.org/10.1016/j.matchemphys.2024.129699

  56. Darmenbayeva A., Rajasekharan R., Massalimova B., Bektenov N., Taubayeva R., Bazarbaeva K., Kurmanaliev M., Mukazhanova Z., Nurlybayeva A., Bulekbayeva K., Kabylbekova A., Ungarbayeva A., Cellulose-based sorbents: A comprehensive review of current advances in water remediation and future prospects, Molecules, 29: 5969, 2024, https://doi.org/10.3390/molecules29245969

  57. Jin F-L., Hu R-R., Park S-J., Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: A review, Composites Part B: Engineering, 164: 287–296, 2019, https://doi.org/10.1016/j.compositesb.2018.10.078

  58. Ng K.M.P., Tan I.S., Foo H.C.Y., Lau J.S.Y., Lam M.K., Wong M.K., Durable polylactic acid bionanocomposites with biomass-derived nanocellulose additives: Recent advances in production, Journal of the Taiwan Institute of Chemical Engineers, 149: 105774, 2024, https://doi.org/10.1016/j.jtice.2024.105774

  59. Ghadhban M.Y., Rashid K.T., Abdulrazak A.A., Ibrahim I.T., Alsalhy Q.F., Shakor Z.M., Hamawand I., Modification of polylactide-poly(butylene adipate-co-terephthalate) (PLA/PBAT) mixed-matrix membranes (MMMs) with green banana peel additives for oil wastewater treatment, Water, 16: 1040, 2024, https://doi.org/10.3390/w16071040

  60. Iyyappan J., Gaddala B., Gnanasekaran R., Gopinath M., Yuvaraj D., Kumar V., Critical review on wastewater treatment using photocatalytic advanced oxidation process: Role of photocatalytic materials, reactor design and kinetics, Case Studies in Chemical and Environmental Engineering, 9: 100599, 2024, https://doi.org/10.1016/j.cscee.2023.100599

  61. Chen G-Y., Yang T-L., Wang Y-H., Li S-H., Chen Y., Properties enhancement of antimicrobial chitosan-deposited polylactic acid films via cold plasma treatment, Food and Health, 5: 11, 2023, https://doi.org/10.53388/FH2023011

  62. Li L., He Z., Song Z., Sheng T., Dong Z., Zhang F., Ma F., A novel strategy for rapid formation of biofilm: Polylactic acid mixed with bioflocculant modified carriers, Journal of Cleaner Production, 374: 134023, 2022, https://doi.org/10.1016/j.jclepro.2022.134023

  63. Park S.S., Lee Y.S., Lee S.W., Repo E., Kim T.H., Park Y., Hwang Y., Facile surface treatment of 3D-printed PLA filter for enhanced graphene oxide doping and effective removal of cationic dyes, Polymers, 15(2): 1–19, 2023, https://doi.org/10.3390/polym15020269

  64. Cheng Y., Deng S., Chen P., Ruan R., Polylactic acid (PLA) synthesis and modifications: A review, Frontiers of Chemistry in China, 4: 259–264, 2009, https://doi.org/10.1007/s11458-009-0092-x

  65. Andrade-Guel M., Cabello-Alvarado C., Romero-Huitzil R.L., Rodríguez-Fernández O.S., Ávila-Orta C.A., Cadenas-Pliego G., Medellín-Banda D.I., Gallardo-Vega C., Cepeda-Garza J., Nanocomposite PLA/C20A nanoclay by ultrasound-assisted melt extrusion for adsorption of uremic toxins and methylene blue dye, Nanomaterials, 11: 2477, 2021, https://doi.org/10.3390/nano11102477

  66. Aijaz M.O., Yang S.B., Karim M.R., Alnaser I.A., Alahmari A.D., Almubaddel F.S., Assaifan A.K., Preparation and characterization of electrospun poly(lactic acid)/poly(ethylene glycol)–b–poly(propylene glycol)–b–poly(ethylene glycol)/silicon dioxide nanofibrous adsorbents for selective copper (II) ions removal from wastewater, Membranes, 13(1): 54, 2023, https://doi.org/10.3390/membranes13010054

  67. Ampawan S., Dairoop J., Keawbanjong M., Chinpa W., A floating biosorbent of polylactide and carboxylated cellulose from biomass for effective removal of methylene blue from water, International Journal of Biological Macromolecules, 266: 131354, 2024, https://doi.org/10.1016/j.ijbiomac.2024.131354

  68. Nouri A., Ang W.L., Mahmoudi E., Chua S.F., Mohammad A.W., Benamor A., Ba-Abbad M.M., Leo C.P., Decoration of polylactic acid on graphene oxide for efficient adsorption of methylene blue and tetracycline, Chemosphere, 322: 138219, 2023, https://doi.org/10.1016/j.chemosphere.2023.138219

  69. John R.P., Anisha G.S., Nampoothiri K.M., Pandey A., Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production, Biotechnology Advances, 27: 145–152, 2009, https://doi.org/10.1016/j.biotechadv.2008.10.004

  70. Kompanje E.J.O., Jansen T.C., Van Der Hoven B., Bakker J., The first demonstration of lactic acid in human blood in shock by Johann Joseph Scherer (1814–1869) in January 1843, Intensive Care Medicine, 33: 1967–1971, 2007, https://doi.org/10.1007/s00134-007-0788-7

  71. Swetha T.A., Ananthi V., Bora A., Sengottuvelan N., Ponnuchamy K., Muthusamy G., Arun A., A review on biodegradable polylactic acid (PLA) production from fermentative food waste – Its applications and degradation, International Journal of Biological Macromolecules, 234: 123703, 2023, https://doi.org/10.1016/j.ijbiomac.2023.123703

  72. Li Y., Bhagwat S.S., Cortés-Penã Y.R., Ki D., Rao C V., Jin Y.S., Guest J.S., Sustainable lactic acid production from lignocellulosic biomass, ACS Sustainable Chemistry & Engineering, 9: 1341–1351, 2021, https://doi.org/10.1021/acssuschemeng.0c08055

  73. Ojo A.O., De Smidt O., Lactic acid: A comprehensive review of production to purification, Processes, 11: 688, 2023, https://doi.org/10.3390/pr11030688

  74. Dana R.H., Ebrahimi F., Synthesis, properties, and applications of polylactic acid‐based polymers, Polymer Engineering & Science, 63: 22–43, 2023, https://doi.org/10.1002/pen.26193

  75. Castañeda-Rodríguez S., González-Torres M., Ribas-Aparicio R.M., Del Prado‑Audelo M.L., Leyva‑Gómez G., Gürer E.S., Sharifi-Rad J., Recent advances in modified poly (lactic acid) as tissue engineering materials, Journal of Biological Engineering, 17: 21, 2023, https://doi.org/10.1186/s13036-023-00338-8

  76. Darwin, Triovanta U., Rinaldi R., Pratama A., Anaerobic acidification of coconut water waste by Lactobacillus acidophilus culture for biotechnological production of lactic acid, Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(6): 1433–1440, 2019, https://doi.org/10.11118/actaun201967061433

  77. Kacaribu A.A., Darwin D., Biotechnological lactic acid production from low-cost renewable sources via anaerobic microbial processes, BioTechnologia, 105: 179–194, 2024, https://doi.org/10.5114/bta.2024.139757

  78. Molina S.G.E., Shetty R., Xiao H., Wätjen A.P., Tovar M., Bang-Berthelsen C.H., Development of a novel lactic acid bacteria starter culture approach: From insect microbiome to plant-based fermentations, LWT – Food Science and Technology, 167: 113797, 2022, https://doi.org/10.1016/j.lwt.2022.113797

  79. Hofvendahl K., Hahn-Hägerdal B., Factors affecting the fermentative lactic acid production from renewable resources, Enzyme and Microbial Technology, 26: 87–107, 2000, https://doi.org/10.1016/S0141-0229(99)00155-6

  80. Ashaolu T.J., Reale A., A holistic review on Euro-Asian lactic acid bacteria fermented cereals and vegetables, Microorganisms, 8: 1176, 2020, https://doi.org/10.3390/microorganisms8081176

  81. Teneva-Angelova T., Hristova I., Pavlov A., Beshkova D., Lactic acid bacteria – from nature through food to health, [in:] Advances in Biotechnology for Food Industry, vol. 14, Elsevier, pp. 91–133, 2018, https://doi.org/10.1016/B978-0-12-811443-8.00004-9

  82. Castillo Martinez F.A., Balciunas E.M., Salgado J.M., Domínguez González J.M., Converti A., de Souza Oliveira R.P., Lactic acid properties, applications and production: A review, Trends in Food Science & Technology, 30: 70–83, 2013, https://doi.org/10.1016/j.tifs.2012.11.007

  83. Kacaribu A.A., Darwin, Sustainable bioproduct production via anaerobic bioconversion by landfill soil inoculum in various carbohydrate wastes, Acta Technologica Agriculturae, 27: 61–68, 2024, https://doi.org/10.2478/ata-2024-0009

  84. Kacaribu A.A., Darwin D., Aisyah Y., Febriani F., Anaerobic bio-processing of agricultural waste for the biotechnological production of lactic acid and volatile fatty acid by landfill soil inoculums, Research in Agricultural Engineering, 71: 10–21, 2025, https://doi.org/10.17221/52/2024-RAE

  85. Alves de Oliveira R., Komesu A., Vaz Rossell C.E., Maciel Filho R., Challenges and opportunities in lactic acid bioprocess design – from economic to production aspects, Biochemical Engineering Journal, 133: 219–239, 2018, https://doi.org/10.1016/j.bej.2018.03.003

  86. Tarraran L., Mazzoli R., Alternative strategies for lignocellulose fermentation through lactic acid bacteria: The state of the art and perspectives, FEMS Microbiology Letters, 365(15): fny126, 2018, https://doi.org/10.1093/femsle/fny126

  87. Li C., Gao M., Zhu W., Wang N., Ma X., Wu C., Wang Q., Recent advances in the separation and purification of lactic acid from fermentation broth, Process Biochemistry, 104: 142–151, 2021, https://doi.org/10.1016/j.procbio.2021.03.011

  88. Huang X., Su S., Xu Z., Miao Q., Li W., Wang L., Advanced composite materials for structure strengthening and resilience improvement, Buildings, 13: 2406, 2023, https://doi.org/10.3390/buildings13102406

  89. Mandala R., Hegde G., Kodali D., Kode V.R., From waste to strength: Unveiling the mechanical properties of peanut-shell-based polymer composites, Journal of Composites Science, 7: 307, 2023, https://doi.org/10.3390/jcs7080307

  90. Phiri R., Mavinkere Rangappa S., Siengchin S., Oladijo O.P., Ozbakkaloglu T., Advances in lightweight composite structures and manufacturing technologies: A comprehensive review, Heliyon, 10: e39661, 2024, https://doi.org/10.1016/j.heliyon.2024.e39661

  91. Sanjay M.R., Madhu P., Jawaid M., Senthamaraikannan P., Senthil S., Pradeep S., Characterization and properties of natural fiber polymer composites: A comprehensive review, Journal of Cleaner Production, 172: 566–581, 2018, https://doi.org/10.1016/j.jclepro.2017.10.101

  92. González-López M.E., Martín Del Campo A.S., Robledo-Ortíz J.R., Arellano M., Pérez-Fonseca A.A., Accelerated weathering of poly(lactic acid) and its biocomposites: A review, Polymer Degradation and Stability, 179: 109290, 2020, https://doi.org/10.1016/j.polymdegradstab.2020.109290

  93. Sreekumar K., Bindhu B., Veluraja K., Perspectives of polylactic acid from structure to applications, Polymers from Renewable Resources, 12: 60–74, 2021, https://doi.org/10.1177/20412479211008773

  94. Rajeshkumar G., Arvindh Seshadri S., Devnani G.L., Sanjay M.R., Siengchin S., Prakash Maran J., Al-Dhabi N.A., Karuppiah P., Mariadhas V.A., Sivarajasekar N., Ronaldo Anuf A., Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review, Journal of Cleaner Production, 310: 127483, 2021, https://doi.org/10.1016/j.jclepro.2021.127483

  95. Luo F., Fortenberry A., Ren J., Qiang Z., Recent progress in enhancing poly(lactic acid) stereocomplex formation for material property improvement, Frontiers in Chemistry, 8: 1–8, 2020, https://doi.org/10.3389/fchem.2020.00688

  96. Ali W., Ali H., Gillani S., Zinck P., Souissi S., Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: A review, Environmental Chemistry Letters, 21: 1761–1786, 2023, https://doi.org/10.1007/s10311-023-01564-8

  97. Jacob J., Linson N., Mavelil-Sam R., Maria H.J., Pothan L.A., Thomas S., Kabdrakhmanova S., Laroze D., Poly(lactic acid)/nanocellulose biocomposites for sustainable food packaging, Cellulose, 31: 5997–6042, 2024, https://doi.org/10.1007/s10570-024-05975-w

  98. Huang Y., Wang Y., Wen J., A study on modification of polylactic acid and its biomedical application, E3S Web of Conferences, 308: 02008, 2021, https://doi.org/10.1051/e3sconf/202130802008

  99. Trivedi A.K., Gupta M.K., Singh H., PLA-based biocomposites for sustainable products: A review, Advanced Industrial and Engineering Polymer Research, 6: 382–395, 2023, https://doi.org/10.1016/j.aiepr.2023.02.002

  100. Panicker A.M., Rajesh K.A., Varghese T.O., Mixed morphology nanocrystalline cellulose from sugarcane bagasse fibers/poly(lactic acid) nanocomposite films: Synthesis, fabrication and characterization, Iranian Polymer Journal, 26: 125–136, 2017, https://doi.org/10.1007/s13726-017-0504-6

  101. Dhar P., Tarafder D., Kumar A., Katiyar V., Thermally recyclable polylactic acid/cellulose nanocrystal films through reactive extrusion process, Polymer, 87: 268–282, 2016, https://doi.org/10.1016/j.polymer.2016.02.004

  102. Yu F., Fei X., He Y., Li H., Poly(lactic acid)-based composite film reinforced with acetylated cellulose nanocrystals and ZnO nanoparticles for active food packaging, International Journal of Biological Macromolecules, 186: 770–779, 2021, https://doi.org/10.1016/j.ijbiomac.2021.07.097

  103. Liu H., Research progress in the synthesis and modification of polylactic acid, Highlights in Science, Engineering and Technology, 84: 35–41, 2024, https://doi.org/10.54097/bbrt6j09

  104. Lai Z., Cui Y., Gao P., Chen X., Modified PLA carrier material and its performance in immobilization of nitrifying bacteria, Materials Science Forum, 610–613: 198–201, 2009, https://doi.org/10.4028/www.scientific.net/MSF.610-613.198

  105. Polishchuk L.M., Kozakevych R.B., Kusyak A.P., Tertykh V.A., Tkachenko O., Strømme M., Budnyak T.M., In situ ring-opening polymerization of L-lactide on the surface of pristine and aminated silica: synthesis and metal ions extraction, Polymers, 14, 2022, https://doi.org/10.3390/polym14224995

  106. Fathy R., Ragab E., Ali K.A., New polymeric matrix of polylactic acid/sodium alginate/carbon nanoparticles (PLA/SA/CNP) for efficient removal of methylene blue, Chemical Papers, 77: 6203–6216, 2023, https://doi.org/10.1007/s11696-023-02932-y

  107. Modolon H.B., Teixeira L.B., Mazur L.P., Santos P.H., Camani P.H., Mei L.H.I., Wermuth T.B., Klegues Montedo O.R., Zimmermann M.V.G., Arcaro S., dos Santos Rosa D., Electrospun adsorbent membrane of PLA containing chitosan for toxic metal ions removal from aqueous solution: Effect of chitosan incorporation, International Journal of Biological Macromolecules, 297: 139435, 2025, https://doi.org/10.1016/j.ijbiomac.2024.139435

  108. Standau T., Zhao C., Castellón M.S., Bonten C., Altstädt V., Chemical modification and foam processing of polylactide (PLA), Polymers, 11(2): 306, 2019, https://doi.org/10.3390/polym11020306

  109. Abdulkareem A., Kasak P., Nassr M.G., Mahmoud A.A., Al-Ruweidi M.K.A.A., Mohamoud K.J., Hussein M.K., Popelka A., Surface modification of poly(lactic acid) film via cold plasma assisted grafting of fumaric and ascorbic acid, Polymers, 13(21): 3717, 2021, https://doi.org/10.3390/polym13213717

  110. Fijoł N., Abdelhamid H.N., Pillai B., Hall S.A., Thomas N., Mathew A.P., 3D-printed monolithic biofilters based on a polylactic acid (PLA)-hydroxyapatite (HAp) composite for heavy metal removal from an aqueous medium, RSC Advances, 11: 32408–32418, 2021, https://doi.org/10.1039/d1ra05202k

  111. Wang Y., Wang Y., Qiu S., Wang C., Zhang H., Guo J., Wang S., Ma H., 3D-printed filters for efficient heavy metal removal from water using PLA@CS/HAP composites, Polymers, 15, 2023, https://doi.org/10.3390/polym15204144

  112. Yu Y., Ding Y., Zhou C., Ge S., Aging of polylactic acid microplastics during hydrothermal treatment of sewage sludge and its effects on heavy metals adsorption, Environmental Research, 216: 114532, 2023, https://doi.org/https://doi.org/10.1016/j.envres.2022.114532

  113. Duan S., Liu X., Wang Y., Meng Y., Alsaedi A., Hayat T., Li J., Plasma surface modification of materials and their entrapment of water contaminant: A review, Plasma Processes and Polymers, 14(9): 1600218, 2017, https://doi.org/10.1002/ppap.201600218

  114. Zhianmanesh M., Gilmour A., Bilek M.M.M., Akhavan B., Plasma surface functionalization: a comprehensive review of advances in the quest for bioinstructive materials and interfaces, Applied Physics Reviews, 10(2): 021301, 2023, https://doi.org/10.1063/5.0130829

  115. Bhatt P., Kumar V., Subramaniyan V., Nagarajan K., Sekar M., Chinni S.V., Ramachawolran G., Plasma modification techniques for natural polymer-based drug delivery systems, Pharmaceutics, 15(8): 2066, 2023, https://doi.org/10.3390/pharmaceutics15082066

  116. Rezaei F., Nikiforov A., Morent R., De Geyter N., Plasma modification of poly lactic acid solutions to generate high quality electrospun PLA nanofibers, Scientific Reports, 8(1): 2241, 2018, https://doi.org/10.1038/s41598-018-20714-5

  117. Ge X., Zhang L., Wei X., Long X., Han Y., Plasma surface treatment and application of polyvinyl alcohol/polylactic acid electrospun fibrous hemostatic membrane, Polymers, 16(12): 1635, 2024, https://doi.org/10.3390/polym16121635

  118. Ma Z., Gao C., Ji J., Shen J., Protein immobilization on the surface of poly-L-lactic acid films for improvement of cellular interactions, European Polymer Journal, 38(11): 2279–2284, 2002, https://doi.org/10.1016/S0014-3057(02)00119-2

  119. Gu J., Catchmark J.M., Polylactic acid composites incorporating casein functionalized cellulose nanowhiskers, Journal of Biological Engineering, 7(1): 31, 2013, https://doi.org/10.1186/1754-1611-7-31

  120. Pellis A., Acero E.H., Weber H., Obersriebnig M., Breinbauer R., Srebotnik E., Guebitz G.M., Biocatalyzed approach for the surface functionalization of poly(L-lactic acid) films using hydrolytic enzymes, Biotechnology Journal, 10(11): 1739–1749, 2015, https://doi.org/10.1002/biot.201500074

  121. Lee S.H., Yeo S.Y., Improvement of hydrophilicity of polylactic acid (PLA) fabrics by means of a proteolytic enzyme from Bacillus licheniformis, Fibers and Polymers, 17(8): 1154–1161, 2016, https://doi.org/10.1007/s12221-016-5923-z

  122. Huang Y., Wang Y., Li Y., Luo C., Yang C., Shi W., Li L., Covalent immobilization of polypeptides on polylactic acid films and their application to fresh beef preservation, Journal of Agricultural and Food Chemistry, 68(39): 10532–10541, 2020, https://doi.org/10.1021/acs.jafc.0c03922

  123. Calzoni E., Cesaretti A., Tacchi S., Caponi S., Pellegrino R.M., Luzi F., Cottone F., Fioretto D., Emiliani C., Di Michele A., Covalent immobilization of proteases on polylactic acid for proteins hydrolysis and waste biomass protein content valorization, Catalysts, 11(2): 167, 2021, https://doi.org/10.3390/catal11020167

  124. Ozaltin K., Di Martino A., Capakova Z., Lehocky M., Humpolicek P., Saha T., Vesela D., Mozetic M., Saha P., Plasma mediated chlorhexidine immobilization onto polylactic acid surface via carbodiimide chemistry: antibacterial and cytocompatibility assessment, Polymers, 13(8): 1201, 2021, https://doi.org/10.3390/polym13081201

  125. Hu S., Deng Y., Li L., Zhang N., Huang T., Lei Y., Wang Y., Biomimetic polylactic acid electrospun fibers grafted with polyethyleneimine for highly efficient methyl orange and Cr(VI) removal, Langmuir, 39(10): 3770–3783, 2023, https://doi.org/10.1021/acs.langmuir.2c03508

  126. Tubić A., Lončarski M., Maletić S., Molnar Jazić J., Watson M., Tričković J., Agbaba J., Significance of chlorinated phenols adsorption on plastics and bioplastics during water treatment, Water, 11(11): 2358, 2019, https://doi.org/10.3390/w11112358

  127. Ghorbani M., Hassan Vakili M., Ameri E., Fabrication and evaluation of a biopolymer-based nanocomposite membrane for oily wastewater treatment, Materials Today Communications, 28: 102560, 2021, https://doi.org/10.1016/j.mtcomm.2021.102560

  128. Lin W-H., Wang H-Y., Kuo J., Lo S-L., Adsorption and desorption characteristics of heavy metals onto conventional and biodegradable plastics, Chemosphere, 333: 138920, 2023, https://doi.org/10.1016/j.chemosphere.2023.138920

  129. Makhetha T.A., Mpitso K., Luyt A.S., Preparation and characterization of eva/pla/sugarcane bagasse composites for water purification, Journal of Composite Materials, 51(9): 1169–1186, 2017, https://doi.org/10.1177/0021998316675399

  130. Sattar M., Hayeeye F., Chinpa W., Sirichote O., Poly(lactic acid)/activated carbon composite beads by phase inversion method for kinetic and adsorption studies of Pb2+ ions in aqueous solution, Desalination and Water Treatment, 146: 227–235, 2019, https://doi.org/10.5004/dwt.2019.23590

  131. Tian Y., Zeng Q-H., Shi L., Xian Z-F., Type I collagen adsorption behavior on the control and modified surface of polylactide coating, Science of Advanced Materials, 14(7): 1190–1195, 2022, https://doi.org/https://doi.org/10.3390/polym13081201

  132. Wei L., Zhao L., Zhu X., He J., Yu D., Zhao Q., Zong K., Wang C., Ma C., Bu Q., Preparation and adsorption application of PLA/GO/PDA nanofiber membrane, Materials Research Express, 11(1): 115006, 2024, https://doi.org/10.1088/2053-1591/ad87b3

  133. Fijoł N., Aguilar-Sánchez A., Ruiz-Caldas M-X., Redlinger-Pohn J., Mautner A., Mathew A.P., 3D printed polylactic acid (PLA) filters reinforced with polysaccharide nanofibers for metal ions capture and microplastics separation from water, Chemical Engineering Journal, 457: 141153, 2023, https://doi.org/10.1016/j.cej.2022.141153

  134. Xiao X., Hodson M.E., Sallach J.B., Biodegradable microplastics adsorb more Cd than conventional microplastic and biofilms enhance their adsorption, Chemosphere, 371: 144062, 2025, https://doi.org/10.1016/j.chemosphere.2025.144062

  135. Liu H., Jiao Q., Pan T., Liu W., Li S., Zhu X., Zhang T., Aging behavior of biodegradable polylactic acid microplastics accelerated by UV/H2O2 processes, Chemosphere, 337: 139360, 2023, https://doi.org/10.1016/j.chemosphere.2023.139360

  136. Li B., Zhao G., Wang G., Zhang L., Gong J., Shi Z., Super high-expansion poly(lactic acid) foams with excellent oil-adsorption and thermal-insulation properties fabricated by supercritical CO2 foaming, Advanced Sustainable Systems, 5(5): 2000295, 2021, https://doi.org/10.1002/adsu.202000295

  137. Sun Y., Wang X., Xia S., Zhao J., Cu(II) adsorption on poly(lactic acid) microplastics: Significance of microbial colonization and degradation, Chemical Engineering Journal, 429: 132306, 2022, https://doi.org/10.1016/j.cej.2021.132306

  138. Zhang L., Narita C., Himeda Y., Honma H., Yamada K., Development of highly oil-absorbent polylactic-acid microfibers with a nanoporous structure via simple one-step centrifugal spinning, Separation and Purification Technology, 282: 120156, 2022, https://doi.org/10.1016/j.seppur.2021.120156

  139. Chen P-W., Hsiao M-N., Xiao L-W., Liu Z-S., Adsorption behavior of heavy metals onto microplastics derived from conventional and biodegradable commercial plastic products, Science of the Total Environment, 951: 175537, 2024, https://doi.org/10.1016/j.scitotenv.2024.175537

  140. Manjunatha C.R., Nagabhushana B.M., Naryana A., Usha P., Raghu M.S., Adrsha J.R., Adsorption of fluoride and DB-53 dye onto PLA/rGO nanoparticles: Mathematical modeling and statistical studies, Journal of Water Process Engineering, 44: 102447, 2021, https://doi.org/10.1016/j.jwpe.2021.102447

  141. Subash A., Naebe M., Wang X., Sahoo S.K., Kandasubramanian B., Electrospinning of polylactic acid fibers reinforced with Ti3C2 for the removal of nickel ions from wastewater, Hybrid Advances, 4: 100109, 2023, https://doi.org/10.1016/j.hybadv.2023.100109

  142. Sattar M., Hayeeye F., Chinpa W., Sirichote O., Preparation and characterization of poly(lactic acid)/activated carbon composite bead via phase inversion method and its use as adsorbent for Rhodamine B in aqueous solution, Journal of Environmental Chemical Engineering, 5: 3780–3791, 2017, https://doi.org/10.1016/j.jece.2017.07.007

  143. Schneider R., Facure M.H.M., Alvarenga A.D., Chagas P.A.M., Dos Santos D.M., Correa D.S., Dye adsorption capacity of MoS2 nanoflakes immobilized on poly(lactic acid) fibrous membranes, ACS Applied Nano Materials, 4(5): 4881–4894, 2021, https://doi.org/10.1021/acsanm.1c00442

  144. Xiao W., Niu B., Yu M., Sun C., Wang L., Zhou L., Zheng Y., Fabrication of foam-like oil sorbent from polylactic acid and Calotropis gigantea fiber for effective oil absorption, Journal of Cleaner Production, 278: 123507, 2021, https://doi.org/10.1016/j.jclepro.2020.123507

  145. Li B., Zhao G., Wang G., Zhang L., Gong J., Shi Z., Biodegradable PLA/PBS open-cell foam fabricated by supercritical CO2 foaming for selective oil-adsorption, Separation and Purification Technology, 257: 117949, 2021, https://doi.org/10.1016/j.seppur.2020.117949

  146. Davidson O., Pereware A., Ikenna Osu C., Environmental Friendly natural polymer and its polylactic acid modified composite synthesized from Thais coronata shell for urea uptake from waste water by equilibration, International Journal of Ecotoxicology and Ecobiology, 8(1): 1–8, 2023, https://doi.org/10.11648/j.ijee.20230801.11

  147. Yadav A.L., Gurave P.M., Gadkari R.R., Ali W., Fabrication and characterization of polylactic acid-based green materials, [in:] Shakeel A. [Ed.], Advances in Green Materials, pp. 75–84, Woodhead Publishing, 2021, https://doi.org/10.1016/B978-0-12-819988-6.00006-9

  148. Pesaranhajiabbas E., Misra M., Mohanty A.K., Recent progress on biodegradable polylactic acid based blends and their biocomposites: A comprehensive review, International Journal of Biological Macromolecules, 253: 126231, 2023, https://doi.org/10.1016/j.ijbiomac.2023.126231

  149. Satyam S., Patra S., Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review, Heliyon, 10(9): e29573, 2024, https://doi.org/10.1016/j.heliyon.2024.e29573

  150. Karagöz İ., Production and characterization of sustainable biocompatible PLA/walnut shell composite materials, Polymer Bulletin, 81(13): 11517–11337, 2024, https://doi.org/10.1007/s00289-024-05247-4

  151. Ozcan D.O., Hendekci̇ M.C., Ovez B., Enhancing the adsorption capacity of organic and inorganic pollutants onto impregnated olive stone derived activated carbon, Heliyon, 10(12): e32792, 2024, https://doi.org/10.1016/j.heliyon.2024.e32792

  152. Nasir F.N., Titah H.S., The use of granular activated carbon and zeolite as an adsorbent to reduce the concentration of phosphate, chemical oxygen demand and total suspended solid in laundry wastewater, Journal of Ecological Engineering, 25: 170–183, 2024, https://doi.org/10.12911/22998993/184089

  153. Pérez-Botella E., Valencia S., Rey F., Zeolites in adsorption processes: State of the art and future prospects, Chemical Reviews, 122: 17647–17695, 2022, https://doi.org/10.1021/acs.chemrev.2c00140

  154. Boer D.G., Langerak J., Pescarmona P.P., Zeolites as selective adsorbents for CO2 separation, ACS Applied Energy Materials, 6: 2634–2656, 2023, https://doi.org/10.1021/acsaem.2c03605

  155. Awasthi A., Jadhao P., Kumari K., Clay nano-adsorbent: Structures, applications and mechanism for water treatment, SN Applied Sciences, 1: 1076, 2019, https://doi.org/10.1007/s42452-019-0858-9

  156. Suryani, Agusnar H., Wirjosentono B., Rihayat T., Nurhanifa, Improving the quality of biopolymer (poly lactic acid) with the addition of bentonite as filler, IOP Conference Series: Materials Science and Engineering, 222(1): 012008, 2017, https://doi.org/10.1088/1757-899X/222/1/012008

  157. Ewis D., Ba-Abbad M.M., Benamor A., El-Naas M.H., Adsorption of organic water pollutants by clays and clay minerals composites: A comprehensive review, Applied Clay Science, 229: 106686, 2022, https://doi.org/10.1016/j.clay.2022.106686

  158. Gopal G., Kvg R., M. S., J. L., Chandrasekaran N., Mukherjee A., Green synthesized Fe/Pd and in-situ bentonite-Fe/Pd composite for efficient tetracycline removal, Journal of Environmental Chemical Engineering, 8(5): 104126, 2020, https://doi.org/10.1016/j.jece.2020.104126

  159. Mishra K., Siwal S.S., Sithole T., Singh N., Hart P., Thakur V.K., Biorenewable materials for water remediation: The central role of cellulose in achieving sustainability, Journal of Bioresources and Bioproducts, 9(3): 253–282, 2024, https://doi.org/10.1016/j.jobab.2023.12.002

  160. Vithya B., Saravanakumar S.S., Senthamaraikannan P., Murugan R., Extraction and characterization of microcrystalline cellulose from Vachellia nilotica plant leaves: A biomass waste to wealth approach, Physiologia Plantarum, 176(3): e14368, 2024, https://doi.org/10.1111/ppl.14368

  161. Ahmima S., Naar N., Jędrzejczak P., Klapiszewska I., Klapiszewski Ł., Jesionowski T., Isolation and characterization of novel cellulose micro/nanofibers from Lygeum spartum through a chemo-mechanical process, Polymers, 16(21): 3001, 2024, https://doi.org/10.3390/polym16213001

  162. Rahmi, Patra A., Lelifajri, Fabrication of coconut dregs residue derived nano-cellulose film for food packaging, South African Journal of Chemical Engineering, 48: 71–79, 2024, https://doi.org/10.1016/j.sajce.2024.01.009

  163. Kacaribu A.A., Rahmi R., Julinawati J., Fathana H., Reza M., Iqhramullah M., Preparation and characterization of cellulose film from velvet tamarind rind (Dialium indum L.) for food packaging, Applied Science and Engineering Progress, 18(3): 7724, 2025, https://doi.org/10.14416/j.asep.2025.03.006

  164. Li Y., Liu Z., Wang S., Kong F., Cellulose composite aerogels with high adsorption capacity and recyclability for dye removal, ChemistrySelect, 9(43): e202402801, 2024, https://doi.org/10.1002/slct.202402801

  165. Nagendran V., Goveas L.C., Vinayagam R., Varadavenkatesan T., Selvaraj R., Challenges and advances in nanocellulose-based adsorbents for dye removal: Mechanisms and future directions, Discover Applied Sciences, 7: 14, 2024, https://doi.org/10.1007/s42452-024-06413-z

  166. Tomkowiak K., Mazela B., Szubert Z., Perdoch W., Hydrophobic cellulose-based sorbents for oil/water separation, Molecules, 29(19): 4661, 2024, https://doi.org/10.3390/molecules29194661

  167. Kost B., Basko M., Bednarek M., Socka M., Kopka B., Łapienis G., Biela T., Kubisa P., Brzeziński M., The influence of the functional end groups on the properties of polylactide-based materials, Progress in Polymer Science, 130: 101556, 2022, https://doi.org/10.1016/j.progpolymsci.2022.101556

  168. Kowalczyk M., Piorkowska E., Kulpinski P., Pracella M., Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers, Composites Part A: Applied Science and Manufacturing, 42(10): 1509–1514, 2011, https://doi.org/10.1016/j.compositesa.2011.07.003

  169. Benini Coelho de Carvalho K.C., Campos de Bomfim A.S., Voorwald H.J.C., Cellulose-reinforced polylactic acid composites for three-dimensional printing using polyethylene glycol as an additive: A comprehensive review, Polymers (Basel), 15(19): 3960, 2023, https://doi.org/10.3390/polym15193960

  170. Ahmed M.A., Mohamed A.A., The use of chitosan-based composites for environmental remediation: A review, International Journal of Biological Macromolecules, 242(Part 2): 124787, 2023, https://doi.org/10.1016/j.ijbiomac.2023.124787

  171. Bhatt P., Joshi S., Urper Bayram G.M., Khati P., Simsek H., Developments and application of chitosan-based adsorbents for wastewater treatments, Environmental Research, 226: 115530, 2023, https://doi.org/10.1016/j.envres.2023.115530

  172. Mohd Asharuddin S., Othman N., Altowayti W.A.H., Abu Bakar N., Hassan A., Recent advancement in starch modification and its application as water treatment agent, Environmental Technology & Innovation, 23: 101637, 2021, https://doi.org/https://doi.org/10.1016/j.eti.2021.101637

  173. Ren Z., Liu C., Zhang B., Wu M., Tan Y., Fang X., Yang P., Liu L., Preparation of amino-functionalized starch-based adsorbent and its adsorption behavior for uranyl ions, Journal of Radioanalytical and Nuclear Chemistry, 328(3): 1253–1263, 2021, https://doi.org/10.1007/s10967-021-07733-9

  174. Khoo P.S., Ilyas R.A., Uda M.N.A., Hassan S.A., Nordin A.H., Norfarhana A.S., Ab Hamid N.H., Rani M.S.A., Abral H., Norrrahim M.N.F., Knight V.F., Lee C.L., Rafiqah S.A., Starch-based polymer materials as advanced adsorbents for sustainable water treatment: current status, challenges, and future perspectives, Polymers (Basel), 15(14): 3114, 2023, https://doi.org/10.3390/polym15143114

  175. Rashwan A.K., Younis H.A., Abdelshafy A.M., Osman A.I., Eletmany M.R., Hafouda M.A., Chen W., Plant starch extraction, modification, and green applications: A review, Environmental Chemistry Letters, 22: 2483–2530, 2024, https://doi.org/10.1007/s10311-024-01753-z

  176. Jiang C., Cui S., Han Q., Li P., Zhang Q., Song J., Li M., Study on application of activated carbon in water treatment, IOP Conference Series: Earth and Environmental Science, 237(2): 022049, 2019, https://doi.org/10.1088/1755-1315/237/2/022049

  177. Hamdan M., Sublaban E., Al-Asfar J., Banisaid M., Wastewater treatment using activated carbon produced from oil shale, Journal of Ecological Engineering, 24(2): 131–139, 2023, https://doi.org/10.12911/22998993/156664

  178. de Magalhães L.F., da Silva G.R., Peres A.E.C., Zeolite application in wastewater treatment, Adsorption Science & Technology, 2022: 4544104, 2022, https://doi.org/10.1155/2022/4544104

  179. Shi J., Yang Z., Dai H., Lu X., Peng L., Tan X., Shi L., Fahim R., Preparation and application of modified zeolites as adsorbents in wastewater treatment, Water Science and Technology, 2017(3): 621–635, 2018, https://doi.org/10.2166/wst.2018.249

  180. Julinawati J., Febriani F., Mustafa I., Fathurrahmi F., Rahmi R., Sheilatina S., Ahmad K., Puspita K., Iqhrammullah M., Tryptophan-based organoclay for aqueous naphthol blue black removal – preparation, characterization, and batch adsorption studies, Journal of Ecological Engineering, 24(7): 274–284, 2023, https://doi.org/10.12911/22998993/165781

  181. Abdel Salam M., Abukhadra M.R., Adlii A., Insight into the adsorption and photocatalytic behaviors of an organo-bentonite/Co3O4 green nanocomposite for malachite green synthetic dye and Cr(VI) metal ions: Application and mechanisms, ACS Omega, 5(6): 2766–2778, 2020, https://doi.org/10.1021/acsomega.9b03411

  182. Iravani R., An C., Adamian Y., Mohammadi M., A review on the use of nanoclay adsorbents in environmental pollution control, Water, Air, and Soil Pollution, 233: 109, 2022, https://doi.org/10.1007/s11270-022-05580-2

  183. Naser H., Czinkota I., Dorkota A., Horváth M., A review of the advancements of potentially toxic element adsorption by various cellulose-based materials and the used adsorbents’ fate, Progress in Agricultural Engineering Sciences, 19(1): 1–13, 2023, https://doi.org/10.1556/446.2023.00068

  184. Elzahar M.M.H., Bassyouni M., Removal of direct dyes from wastewater using chitosan and polyacrylamide blends, Scientific Reports, 13(1): 15750, 2023, https://doi.org/10.1038/s41598-023-42960-y

  185. García-Padilla Á., Moreno-Sader K.A., Realpe Á., Acevedo-Morantes M., Soares J.B.P., Evaluation of adsorption capacities of nanocomposites prepared from bean starch and montmorillonite, Sustainable Chemistry and Pharmacy, 17: 100292, 2020, https://doi.org/10.1016/j.scp.2020.100292

  186. Abd El-Ghany N.A., Elella M.H.A., Abdallah H.M., Mostafa M.S., Samy M., Recent advances in various starch formulation for wastewater purification via adsorption technique: A review, Journal of Polymers and the Environment, 31(7): 2792–2825, 2023, https://doi.org/10.1007/s10924-023-02798-x

  187. Oladoye P.O., Kadhom M., Khan I., Hama Aziz K.H., Alli Y.A., Advancements in adsorption and photodegradation technologies for Rhodamine B dye wastewater treatment: Fundamentals, applications, and future directions, Green Chemicals Engineering, 5(4): 440–460, 2024, https://doi.org/10.1016/j.gce.2023.12.004