Comparison of Gantry Drive and Crankset: A Pilot Study Across a Broad Power Spectrum

Downloads

Authors

  • Łukasz BEREŚ Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland ORCID ID 0000-0002-9030-1784
  • Marcin OBSZAŃSKI Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland
  • Paweł PYRZANOWSKI Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland ORCID ID 0000-0003-1015-7645

Abstract

The gantry drive was originally invented in 1948 in England and was “rediscovered” in Poland in 2019 while working on lightweight, personal, compact vehicles. In this study, the gantry drive is subjected to dynamic tests against the background of the commonly known crankset. The aim of the dynamic tests is to develop power curves and measure efficiency for various human-mechanism systems, i.e., the hand-driven crankset, the leg-driven crankset, and the gantry drive. Pilot dynamic tests have shown many advantages of the gantry over the crankset; in general, test participants were much less tired when using the gantry drive.

Keywords:

gantry, crankset, drive, power, vehicle

References


  1. Rundle L.A., Crankless bicycle, Patent GB654743A, 1951, https://worldwide.espacenet.com/patent/search/family/010234864/publication/GB654743A?q=gb654743

  2. Bereś Ł., Drive system, in particular for 3 and 4 wheel bicycles [in Polish: Układ napędowy zwłaszcza do rowerow 3 i 4 kołowych], Patent application P.429502, 2019, https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.429502?lng=pl

  3. White L., Medieval technology and social change, Oxford University Press, 1962, https://maelstromlife.wordpress.com/wp-content/uploads/2015/12/lynn-white__medievaltechnology-and-social-change-1962.pdf (access: 2025.01.14).

  4. Lallement P., Improvement in velocipedes, Patent US59915A, 1866, https://worldwide.espacenet.com/patent/search/family/002129454/publication/US59915A?q=US59915A

  5. Wikipedia, Pierre Lallement, 2006, https://en.wikipedia.org/wiki/Pierre Lallement (access: 2025.01.14).

  6. Wikipedia, James Starley, 2003, https://en.wikipedia.org/wiki/James Starley (access: 2025.01.14).

  7. Wikipedia, John Kemp Starley, 2005, https://en.wikipedia.org/wiki/John Kemp Starley (access: 2025.01.14).

  8. Wikipedia, Safety bicycle, 2004, https://en.wikipedia.org/wiki/Safety bicycle (access: 2025.01.14).

  9. Bereś Ł., Pyrzanowski P., The gantry as a drive for a horizontal bike: Initial investigation of rotary work, Applied Bionics and Biomechanics, 2021: 6654377, 2021, https://doi.org/10.1155/2021/6654377

  10. Bereś Ł., Pyrzanowski P., Surface of maximum forces generated by human legs for two type of seat – Experimental investigation, [in:] Book of Abstracts of 39th Danubia-Adria Symposium on Advances in Experimental Mechanics, Hungarian Scientific Society of Mechanical Engineering, pp. 18–19, Siofok, 2023, https://das2023.hu/assets/images/BOA_39th_DAS.pdf (access: 2025.01.14).

  11. Bereś Ł., Drivetrain system designed for a 3 wheel bike [in Polish: Układ przeniesienia napędu], Patent Pat.245976, 2020, https://ewyszukiwarka.pue.uprp.gov.pl/search/pwpdetails/P.433694?lng=pl

  12. Bereś Ł., Bereś B., Retracting system of the gantry used as a drive, in particular in 3- and 4-wheel bicycles [in Polish: Układ wycofywania suwnicy stosowanej jako napęd w rowerach trzy i czterokołowych], Patent Pat.245977, 2020, https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.433695?lng=pl

  13. Bereś Ł., Pyrzanowski P., Power transmission system for a human-powered vehicle [in Polish: Układ napędowy do pojazdu zasilanego siłą ludzkich mięśni], Patent Pat.244586, 2020, https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.438930?lng=pl

  14. Bereś Ł., Pyrzanowski. P., Power transmission system for a human-powered vehicle [in Polish: Układ napędowy do pojazdu zasilanego siłą ludzkich mięśni], Patent Pat.244587, 2023, https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.438931?lng=pl

  15. Bereś Ł., Pyrzanowski. P., Power transmission system for a human-powered vehicle [in Polish: Układ napędowy do pojazdu zasilanego siłą ludzkich mięśni], Patent Pat.244588, 2023, https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.438932?lng=pl

  16. Tian H., Zhang H., Yin Z., Liu Y., Zhang X., Xu Y., Chen H., Advancements in compressed air engine technology and power system integration: A comprehensive review, Energy Reviews, 2(4): 100050, 2023, https://doi.org/10.1016/j.enrev.2023.100050

  17. BereSolutions 2023, BereSolutions Products, 2023, https://www.beresolutions.com/ (access: 2025.01.14).

  18. Bereś Ł., Pyrzanowska J., Mirowska-Guzel D., Obszański M., Pyrzanowski P., Optimization of the seat position for a personal vehicle equipped with a crankset – Pilot study, Scientific Reports, 14: 5822, 2024, https://doi.org/10.1038/s41598-024-56446-y

  19. World Human Powered Vehicle Association, Competition, Records and Achievements, n.d., http://www.whpva.org/competition.html (access: 2025.01.14).

  20. Datta S.R., Ramanathan N.L., Energy expenditure in work predicted from heart rate and pulmonary ventilation, Journal of Applied Physiology, 26(3): 297–302, 1969, https://doi.org/10.1152/jappl.1969.26.3.297

  21. Javorka M., Zila I., Balh´arek T., Javorka K., Heart rate recovery after exercise: Relations to heart rate variability and complexity, Brazilian Journal of Medical and Biological Research, 35(8): 991–1000, 2002, https://doi.org/10.1590/S0100-879X2002000800018

  22. Behrens M., Gube M., Chaabene H., Pierske O., Zenon A., Broscheid K.-C., Schega L., Husmann F., Weippert M., Fatigue and human performance: An updated framework, Sports Medicine, 53(1): 7–31, 2023, https://doi.org/10.1007/s40279-022-01748-2

  23. Alcazar J., Csapo R., Ara I., Alegre L.M., On the shape of the force-velocity relationship in skeletal muscles: The linear, the hyperbolic, and the double-hyperbolic, Frontiers in Physiology, 10: 769, 2019, https://doi.org/10.3389/fphys.2019.00769

  24. Jaskolska A., Jaskolski A., Physiological and mechanical properties of skeletal muscles – Are they the same in different muscles and in all individuals? [in Polish: Właściwości fizjologiczne i mechaniczne mięśni szkieletowych – Czy są takie same w rożnych mięśniach i u wszystkich osob?], Kosmos. Problemy Nauk Biologicznych, 69(4): 739–756, 2020, https://doi.org/10.36921/kos.2020 2734.

  25. Gao Y-R., Drew P.J., Determination of vessel cross-sectional area by thresholding in Radon space, Journal of Cerebral Blood Flow & Metabolism, 34(7): 1180–1187, 2014, https://doi.org/10.1038/jcbfm.2014.67

  26. Mortensen J.D., Talbot S., Burkart J.A., Cross-sectional internal diameters of human cervical and femoral blood vessels: Relationship to subject’s sex, age, body size, The Anatomical Records, 226(1): 115–124, 1990, https://doi.org/10.1002/ar.1092260114

  27. Hof A.L., Van den Berg Jw., How much energy can be stored in human muscle elasticity?: Comment on: ‘An alternative view of the concept of utilisation of elastic energy in human movements’, Human Movement Science, 5(2): 107–114, 1986, https://doi.org/10.1016/0167-9457(86)90018-7

  28. Roberts T.J., Contribution of elastic tissues to the mechanics and energetics of muscle unction during movement, Journal of Experimental Biology, 219(2): 266–275, 2016, https://doi.org/10.1242/jeb.124446

  29. Boning D., Maassen N., Steinach M., The efficiency of muscular exercise, German Journal of Sports Medicine, 68: 203–214, 2017, https://doi.org/10.5960/dzsm.2017.295

  30. Coyle E.F., Understanding efficiency of human muscular movement exemplifies integrative and translational physiology, The Journal of Physiology, 571(3): 501, 2006, https://doi.org/10.1113/jphysiol.2006.106591

  31. Ogilvie F., Ogilvie J., Human powered machine and conveyance with reciprocating pedals, Patent WO9212882A1, 1992, https://worldwide.espacenet.com/patent/search/family/024594722/publication/WO9212882A1?q=wo92%2F12882