Engineering Transactions, 63, 2, pp. 233–243, 2015

The Perzyna Viscoplastic Model in Dynamic Behaviour of Magnetorheological Fluid under High Strain Rates

Leszek FRĄŚ
http://www.ippt.pan.pl/
Institute of Fundamental Technological Research Polish Academy of Sciences
Poland

The extension of viscoplastic model of Perzyna for the field of magnetorheological materials is proposed. Perzyna’s approach is adopted to identify the mechanisms of microscopic rearrangement of ferroelements producing visible increase of material stiffness, in particular increase of shear modulus. The project of laboratory test stand is presented. It is based on Split-Hopkinson pressure bar set-up equipped with container for magnetorheological fluid and coil to control it.
Keywords: magnetorheological fluid; magnetorheological gel; Perzyna viscoplastic model; Split-Hopkinson pressure bar.
Full Text: PDF

References

Klepaczko, J, R,. Introduction to experimental techniques for materisla testing at high strain rates. Institute of Aviation, Warsaw, 2007.

Milecki A. Ciecze elektro i magnetotrologiczne oraz ich zastosowania w technice. Wydawnictwo Politechniki Poznańskiej, Poznań, 2010.

Nowacki W. K. Zagadnienia falowe w teorii plastyczności .Państwowe Wydawnictwo Naukowe, Warszawa, 1974.

Perzyna P. Teoria Lepkopastyczności. Państwowe Wydawnictwo Naukowe, Warszawa,1966.

Kenner V. H. The Fluid Hopkinson Bar: Experiments in which waves are propagated through a fluid column are. Experimental Mechanics, 1980 July,.

Perzyna P. The constitutive equations for rate sensitive plastic materials. Quarterly of applied mathematics, Vol. XX, No. 4, 321-332. 1963 January,.

Bajkowski J., Skalski P., Analysis of Viscoplastic Properties of a Magnetorheological Fluid in a Damper. Acta Mechanica. vol 6 no 3, 5-10, 2012

Xiaojie W., Farmarz G., Study of Magnetorheological Fluids at High Shear Rates. Rheol Acta, 45, 899-908,Springer-Verlag, 2006

Jolly M. R., Carlson J., D., Munoz B., C., A Model of the Behavior of Magnetorheological Materials, Smart Material and Structures. 5, 607-614, 1996 May

Skalski P., Zalewski R., Viscoplastic Properties of an Magnetorheological Fluid in a Damper, Journal of Theoretical and Applied Mechanics 52, pp. 1061-1070, 2014

Yongbo Y., Lin L., Guang C., Static Yield Stress of Ferrofluid based magnetorheological Fluids, Rheol Acta 48, 457-466, 2009

Russel W. B., Grant M., C., Distinguishing between dynamic yielding and wall slip in a weakly flocculated colloidal dispersion, Colloids and Surface, Physicochemical and Engineering Aspects 161,271-282, 2000

Yangguang X., Xinglong G., Shouhu X., Soft Magnetoreological Polymer Gel with Controllable rheological properties, Smart Material and Structures 22, 2013 May

Bossis G., Lacis S., Meunier A., Vokova O., Magnetorheological Fluids, Journal of Magnetism and Magnetic Materials 252, 224–228, 2002

Holnicki-Szulc J., Graczykowski C., Mikułowski G., Mróz A., Pawłowski P.K. Smart technologies for adaptive impact absorption, Solid State Phenomena (ISSN: 1012-0394) Vol.154, pp.187-194, 2009

Jarząbek D, Precise and direct method for the measurement of the torsion spring constant of the atomic force microscopy cantilevers, Review of Scientific Instruments (ISSN:0034-6748) Vol.86, pp.013701-1-013701-6, 2015

Quoc-Hung N., Seung-Bok C., Optimal Design Methodology of Magnetorheological Fluid Based Mechanisms, Smart Actuation and Sensing Systems - Recent Advances and Future Challenges, 953-978, 2012

Lim A.,S., Lopatnikov S., L., Gillespie J., W., Jr. Implementing the Split Hopkinson Pressure Bar Technique for Viscous Fluid Evaluation, Proceedings of XIth International Congress and Exposition, June 2-5, 2008 Orlando, Florida USA, 2008 Society for Experimental Mechanics Inc.

Lim A.,S., Lopatnikov S., L., Gillespie J., W., Jr., Wagner N., J., Phenomenological modeling of the response of a dense colloidal suspension under dynamic squeezing flow, Journal of Non-Newtonian Fluid Mechanics 166, 680-688, 2011,

Vernal H.Kenner, The Fluid Hopkinson Bar, SESA Spring Meeting in San Francisco, 226-232, 1979




Copyright © 2014 by Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, Poland