Engineering Transactions, 0, 0, pp. , 0
10.24423/EngTrans.1185.20201120

Segregation Effect on Solidification Cracking in Spot Welding of the 6XXX Aluminum

Andrés RAMIREZ
Universidad de Antioquia
Colombia

Jonathan GRACIANO-URIBE
Instituto Tecnológico Metropolitano
Colombia

Diego HINCAPIE ZULUGA
Instituto Tecnológico Metropolitano
Colombia

Edwar TORREZ LOPEZ
Universidad de Antioquia
Colombia

Solidification cracking is a critical phenomenon, especially in the welding of AA6XXX, due these alloys present a wider freezing temperature range. The amount of liquid at the end of the solidification is a dominant factor in promoting or reducing the number of cracks. This paper proposes to assess the effect of the heat input in controlling the cracking during the spot welding in AA6061-T6. Four deposit conditions, made with GTAW, were assessed, in which the cracking degree was quantified and compared with the resulting microstructure. This work confirms and explains why the heat input governs the constitutional cooling, which simultaneously controls the microsegregation amount. With low heat input, the segregation is interdendritic, and the eutectic liquid gathers within the grains, which reduces the cracking susceptibility. A high heat input promotes the higher accumulation of eutectic liquid at the grain boundaries, facilitating cracks’ formation and growth. A high concentration of eutectic liquid promotes the healing effect, reducing the formation of cracks.
Keywords: constitutional supercooling; micro segregation; healing effect
Full Text: PDF

References

Clyne T.W., Wolf M., Kurz W., The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting, Metallurgical transactions B, 13(2): 259–266, 1982, doi: 10.1007/BF02664583.

Campbell J., Castings, Elsevier, 2003.

Kou S., Solidification and liquation cracking issues in welding, JOM, 55(6): 37–42, 2003, doi: 10.1007/s11837-003-0137-4.

Cross C.E., Boellinghaus T., The effect of restraint on weld solidification cracking in aluminium, Welding in the World, 50(11–12): 51–54, 2006, doi: 10.1007/BF03263461.

Zhang J., Weckman D.C., Zhou Y., Effects of temporal pulse shaping on cracking susceptibility of 6061-T6 aluminum Nd:YAG laser welds, Welding Journal, 87(1): 18–30, 2008.

Kou S., Weld metal solidification cracking, [in:] Welding Metallurgy, New Jersey: John Wiley & Sons, Inc., 2003, pp. 263–295, doi: 10.1002/0471434027.ch11.

Liu R., Dong Z., Pan Y., Solidification crack susceptibility of aluminum alloy weld metals, Transactions of Nonferrous Metals Society of China, 16(1): 110–116, 2006, doi: 10.1016/S1003-6326(06)60019-8.

Cross C., Kramer L., Tack Q., Loechel L., Aluminum weldability and hot tearing theory, [in:] Welding of Materials ASM Int., pp. 275-282, 1990.

Arata Y., Matsuda F., Nakata K., Sasaki I., Soldification crack susceptibility of aluminium alloy weld metals (Report I): Characteristics of ductility curves during solidification by means of the trans-varestraint test, Trans. JWRI, 5(1976–12): 153–167, 1983.

Arata Y., Matsuda F., Nakata K., Shinozaki K., Solidification crack susceptibility of aluminum alloy weld metals (Report II) : Effect of straining rate on cracking threshold in weld metal during solidification, Trans. JWRI, 6(1977–06): 91–104, 1983.

Rosenberg R.A., Flemings M.C., Taylor H.F., Nonferrous Binary alloys hot tearing, AFS Transactions-American Foundry, 68: 518–528, 1960.

Cross C.E., Olson D.L., Hot tearing model to asses aluminum weldability, Aluminium Alloys Their Physical and Mechanical Properties, III, pp. 1869–1875, 1986.

Dudas J.H., Preventing weld cracks in high strength aluminum alloys, Welding Journal, 45: 3, 1966.

Olson D.L., Siewert T.A., Liu S., Edwards G.R., Metals Handbook, Vol. 6, Welding Brazing and Soldering, ASM Int. Mater. Park, 1990.

Zhao H., White D.R., DebRoy T., Current issues and problems in laser welding of automotive aluminium alloys, International Materials Reviews, 44(6): 238–266, 1999, doi: 10.1179/095066099101528298.

Luijendijk T., Welding of dissimilar aluminium alloys, Journal of Materials Processing Technology, 103(1): 29–35, 2000, doi: 10.1016/S0924-0136(00)00415-5.

Cao X., Wallace W., Immarigeon J.-P., Poon C., Research and progress in laser welding of wrought aluminum alloys. II. Metallurgical microstructures, defects, and mechanical properties, Materials and Manufacturing Processes, 18(1): 23–49, 2003, doi: 10.1081/AMP-120017587.

Rappaz M., Drezet J.-M., Gremaud M., A new hot-tearing criterion, Metallurgical and materials transactions A, 30(2): 449–455, 1999, doi: 10.1007/s11661-999-0334-z.

Kou S., A criterion for cracking during solidification, Acta Materialia, 88: 366–374, 2015, doi: 10.1016/j.actamat.2015.01.034.

Liu J., Kou S., Crack susceptibility of binary aluminum alloys during solidification, Acta Materialia, 110: 84–94, 2016, doi: 10.1016/j.actamat.2016.03.030.

Soysal T., Kou S., A simple test for assessing solidification cracking susceptibility and checking validity of susceptibility prediction, Acta Materialia, 143: 181–197, 2018, doi: 10.1016/j.actamat.2017.09.065.

Cieslak M.J., Fuerschbach P.W., On the weldability, composition, and hardness of pulsed and continuous Nd:YAG laser welds in aluminum alloys 6061,5456, and 5086, Metallurgical Transactions B, 19(2): 319–329, Apr. 1988, doi: 10.1007/BF02654217.

Nakata K., Matsuda F., Evaluations of ductility characteristics and cracking susceptibility of Al alloys during welding (materials, metallurgy & weldability), Transactions of JWRI, 24(1): 83–94, 1995.

Çam G., Koçak M., Progress in joining of advanced materials, International Materials Reviews, 43(1): 1–44, 1998, doi: 10.1179/imr.1998.43.1.1.

Ion J.C., Laser beam welding of wrought aluminium alloys, Science and Technology of Welding and Joining, 5(5): 265–276, 2000, doi: 10.1179/136217100101538308.

Flemings M.C., Solidification Processing, McGraw-Hill Series in Material Science and Engineering, McGraw-Hill, New York, 1974.

Soysal T., Kou S., Effect of filler metals on solidification cracking susceptibility of Al alloys 2024 and 6061, Journal of Materials Processing Technology, 266: 421–428, Apr. 2019, doi: 10.1016/j.jmatprotec.2018.11.022.

Kou S., Le Y., Nucleation mechanism and grain refining of weld metal, Welding Reserarch, Supplement to welding Journal, 65(4): 305–313, 1986.

Böllinghaus T., Herold H., Cross C.E., Lippold J.C., Hot Cracking Phenomena in Welds II. Springer Science & Business Media, 2008.

O’Brien A., Guzman C., Welding Handbook: Welding Processes, American Welding Society, 2007.

DuPont J.N., Marder A.R., The effect of welding parameters and process type on arc and melting efficiency is evaluated, Welding Journal Including Welding Reserarch Supplement, 74(12): 406–416, 1995.

Zhang H., Senkara J., Wu X., Suppressing cracking in resistance welding AA5754 by mechanical means, Journal of Manufacturing Science and Engineering, 124(1): 79–85, 2002, doi: 10.1115/1.1418693.

Lu S.P., Dong W.C., Li D.Z., Li Y.Y., Numerical simulation for welding pool and welding arc with variable active element and welding parameters, Science and Technology of Welding and Joining, 14(6): 509–516, 2009, doi: 10.1179/136217109X441182.

Vemanaboina H., Akella S., Buddu R.K., Welding process simulation model for temperature and residual stress analysis, Procedia Material Science, 6: 1539–1546, 2014, doi: 10.1016/J.MSPRO.2014.07.135.

Hosseini V.A. et al., A novel arc heat treatment technique for producing graded microstructures through controlled temperature gradients, Materials & Design, 121: 11–23, 2017, doi: 10.1016/J.MATDES.2017.02.042.

Cross C.E., Olson D.L., Hot tearing model to assess aluminum weldability, [in:] Aluminum AIloys--Their Physica I and Mechanical Properties, pp. 1869–1875, 1986.

Cross C.E., On the origin of weld solidification cracking, [in:] Hot Cracking Phenomena in Welds, Berlin/Heidelberg: Springer-Verlag, pp. 3–18, 2008.

Apolinario L.H.R. et al., Predominant solidification modes of 316 austenitic stainless steel coatings deposited by laser cladding on 304 stainless steel substrates, Metallurgical and materials transactions A, 50(8): 3617–3628, 2019, doi: 10.1007/s11661-019-05293-y.

Hatch J.E., Metallurgy of heat treatment and general principles of precipitation hardening, [in:] Aluminum: Properties and Physical Metallurgy, J.E. Hatch [Ed.], pp. 134–159, ASM International, 1984, doi: 10.1361/appm1984p134.

Lampman S., Zore T.B., Wrought titanium and titanium alloys, [in:] ASM Handbook, Vol. 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, pp. 592–633, ASM International: Cleveland, OH, USA, doi: 10.31399/asm.hb.v02.9781627081627.

Zhang J., Fan Z., Y. Wang Q., Zhou B.L., Equilibrium pseudobinary Al–Mg2Si phase diagram, Materials Science and Technology, 17(5): 494–496, 2001, doi: 10.1179/026708301101510311.

Warmuzek M., Metallographic techniques for aluminum and its alloys, [in:] Metallography and Microstructures, ASM Handbook, Vol. 9, G.F. Vander Voort [Ed.], pp. 711–751, ASM International, 2004, doi: 10.31399/asm.hb.v09.a0003769.

Arbeláez J., Hincapié D.A., Torres E., Ramírez A.J., Characterization of AA6063-T5 aluminum alloy by optical microscopy, scanning electron and transmission electron [in Spanish], Revista Colombiana De Materiales (5): 59–64, 2014, https://revistas.udea.edu.co/index.php/materiales/article/view/19131.




DOI: 10.24423/EngTrans.1185.20201120

Copyright © 2014 by Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, Poland