Engineering Transactions, 0, 0, pp. , 0
10.24423/EngTrans.1181.20210126

Evaluation of Asphalt Mixtures From the Correction of the Failure Area in the IDEAL Test

Oscar Javier REYES ORTIZ
Nueva Granada Military University
Colombia

Juan Sebastian USECHE-CASTELBLANCO
Nueva Granada Military University
Colombia

Marcela MEJIA
Nueva Granada Military University
Colombia

The IDEAL cracking test was developed in 2019 in the Texas A&M Transportation Institute as an alternative to evaluate the fracture tolerance of asphalt mixtures by the same indirect tensile strength test but with a different interpretation. In this methodology, the fracture area is described as a plane surface. However, the fracture of the asphalt mix is characterized by its irregularity and a non-uniform failure surface. For this reason, this work presents a model to determine the actual area of the failure for a set of asphalt mixtures with different characteristics using a 3D scanner. The main goal is to determine a possible correction factor of the actual fracture surface and observe the IDEAL test modification. This study shows that it is possible to standardize the correction factor for four of the five mixtures.
Keywords: IDEAL test; 3D scanner; fracture resistance; asphalt mixtures
Full Text: PDF

References

Zhou F., Newcomb D., Gurganus Ch., Banihashemrad S., Park E.S., Sakhaeifar M., Lytton R.L., Final Report of NCHRP 9-57: Experimental Design for Field Validation of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures, Texas A&M Transportation Institute, 2016.

Falla G.C., Leischner S., Blasl A, Erlingsson S., Characterization of unbound granular materials within a mechanistic design framework for low volume roads, Transportation Geotechnics, 13: 2–12, 2017, doi: 10.1016/j.trgeo.2017.08.010.

Zhou F., Final Report for NCHRP IDEA Project 195: Development of an IDEAL Cracking Test for Asphalt Mix Design, Quality Control and Quality Assurance, Texas A&M Transportation Institute, 2019.

Lu D.X., Saleh M., Nguyen N.H.T., Effect of rejuvenator and mixing methods on behaviour of warm mix asphalt containing high RAP content, Construction and Building Materials, 197: 792–802, 2019, doi: 10.1016/j.conbuildmat.2018.11.205.

Ziari H., Moniri A., Laboratory evaluation of the effect of synthetic Polyolefin-glass fibers on performance properties of hot mix asphalt, Construction and Building Materials, 213: 459–68, 2019, doi: 10.1016/j.conbuildmat.2019.04.084.

Pérez-Jiménez F., Botella R., Moon K.-H., Marasteanu M., Effect of load application rate and temperature on the fracture energy of asphalt mixtures. Fénix and semi-circular bending tests, Construction and Building Materials, 48: 1067–1071, 2013, doi: 10.1016/j.conbuildmat.2013.07.084.

Mahyuddin A., Tjaronge M.W., Ali N., Isran Ramli M., Experimental analysis on stability and indirect tensile strength in asphalt emulsion mixture containing buton granular asphalt, International Journal of Applied Engineering Research, 12(12): 3162–3169, 2017.

Valdés Vidal G., Evaluation of the cracking process in bituminous mixtures through the development of a new experimental test: Fénix Test [in Spanish: Evaluación del proceso de fisuración en las mezclas bituminosas mediante el desarrollo de un nuevo ensayo experimental: Ensayo Fénix], Ph.D.Thesis, Prog. ITT. Univ. Cataluña, Barcelona, 2011.

Reyes-Ortiz O.J., Alvarez-Lugo A.E., Botella-Nieto R., Study of a hot asphalt mixture response based on energy concepts, DYNA, 78(168): 45–52, 2011.

Moaveni M., Cetin S., Brand A.S.., Dahal S., Roesler J.R., Tutumluer E., Machine vision based characterization of particle shape and asphalt coating in Reclaimed Asphalt Pavement, Transportation Geotechnics, 6: 26–37, 2016, doi: 10.1016/j.trgeo.2016.01.001.

Tsai B.-W., Coleri E., Harvey J.T., Monismith C.L., Evaluation of AASHTO T 324 Hamburg-Wheel Track Device test, Construction and Building Materials, 114: 248–60, 2016, doi: 10.1016/j.conbuildmat.2016.03.171.

Hull D., Fractography: Observing, Measuring and Interpreting Fracture Surface Topography, Cambridge University Press, Cambridge, 1999.

Reyes-Ortiz O.R., Mejía M., Useche-Castelblanco J.S., Aggregate segmentation of asphaltic mixes using digital image, Bulletin of the Polish Academy of Sciences: Technical Sciences, 67(2): 279–287, 2019, doi: 10.24425/bpas.2019.128115.

Reyes Ortiz O.J., Fuentes Pumarejo L.G., Moreno-Torres O.H., Behavior of asphalt mixtures made with wax-modified asphalt [in Spanish: Comportamiento de mezclas asfálticas fabricadas con asfaltos modificados con ceras], Rev Científica Ing y Desarro, 31(1): 161–178, 2013.

Inzerillo L., Di Mino G., Roberts R., Image-based 3D reconstruction using traditional and UAV datasets for analysis of road pavement distress, Automation in Construction, 96: 457–469, 2018, doi: 10.1016/j.autcon.2018.10.010.

Anderson T.L., Fracture Mechanics: Fundamentals and Applications, 4th ed., CRC Press; 2017.

Wang L., Ren M., Xing Y., Chen G., Study on affecting factors of interface crack for asphalt mixture based on microstructure, Construction and Building Materials, 156: 1053–1062, 2017, doi: 10.1016/j.conbuildmat.2017.05.160.

Stewart C.M., Garcia E., Fatigue crack growth of a hot mix asphalt using digital image correlation, International Journal of Fatigue, 120: 254–266, 2019, doi: 10.1016/j.ijfatigue.2018.11.024.

Espinosa L., Wills J., Caro S., Braham A., Influence of the morphology of the cracking zone on the fracture energy of HMA materials, Materials and Structures, 52(2): Article number 35, 2019, doi: 10.1617/s11527-019-1334-0.

INVIAS, Road Construction Specifications and Testing Standards for Road Materials [in Spanish: Especificaciones de construcción de carreteras y normas de ensayos para materiales de carreteras], Inst Nac Vías – Minist Transp, Colombia, 2013.

Anochie-Boateng J., Tutumluer E., Characterizing resilient behavior of naturally occurring bituminous sands for road construction, Journal of Materials in Civil Engineering, 22(11): 1085–1092, 2010, doi: 10.1061/(ASCE)MT.1943-5533.0000115.

Wang Y., Binaud N., Gogu C., Bes C., Fu J., Determination of Paris’ law constants and crack length evolution via Extended and Unscented Kalman filter: An application to aircraft fuselage panels, Mechanical Systems and Signal Processing, 80: 262–281, 2016, doi: 10.1016/j.ymssp.2016.04.027.

Papangelo A., Guarino R., Pugno N., Ciavarella M., On unified crack propagation laws, Engineering Fracture Mechanics, 207: 269–276, 2019, doi: 10.1016/j.engfracmech.2018.12.023.

Alvarez-Lugo A.E., Reyes-Ortiz O.J., Miró R., A review of the characterization and evaluation of permeable friction cource mixtures [in Spanish: Revisión de la caracterización y evaluación de mezclas drenantes], Ingeniare. Revista chilena de ingeniería, 22(4): 469–482, 2014.

Rami K.Z., Amelian S., Kim Y.-R., You T., Little D.N., Modeling the 3D fracture-associated behavior of viscoelastic asphalt mixtures using 2D microstructures, Engineering Fracture Mechanics, 182: 86–99, 2017, doi: 10.1016/j.engfracmech.2017.07.015.




DOI: 10.24423/EngTrans.1181.20210126

Copyright © 2014 by Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, Poland