Engineering Transactions, 32, 4, pp. 467-480, 1984

Optimal Design of Elastic Arches with I Cross-Section

G. Szefer
Technical University of Kraków, Kraków

L. Mikulski
Technical University of Kraków, Kraków

This paper concerns strength optimization of elastic arches with I cross-section. Arches are subjected to a dead weight and useful external load. The volume of the element or the deflection at the chosen point are the optimality criteria. Side conditions concern strength constraints (bending and shearing stress) and geometry is imposed on the dimensions of the cross-section. The effective Pontryagin method is used for solving the formulated tasks of optimization. The computer program has been designed and particular solutions for various forms of the arch centre line and for various kinds of support have been obtained.

Full Text: PDF


A. K. AZIZ, Numerical solution of boundary value problems for differential equations, Academic Press, New York 1975.

R. BULIRSGH, Die Mehrzielmethode zur numerischen Losung von nichtlinearen Randwert-problemen und Aufgaben der optimalen, Steuerung, Raport der Carl-Grnz-Gesellschaft, 1971.

R. BULIRSGH, J. STOER, P. DEUFLHARD, Numerical solution of nonlinear two-point boundary value problems, Handbook, sedes Approximation Num. Math., 1972.

В. НЕМИРОВСКИЙ, В. МЛЗЛЛОВ, Оптимальное проектирование конструкций, библиограф. указатель., Новосибирск 1975,

L. S. PONTRIAOIN, V. G. BOLTIANSKIJ, R. V. GRAMKRELIDZE, E. F. MISCENKO, Mathematische Theorie optimaler Prozesse, Verlag R. Oldenbourg, Miinchen 1964.

S. M. ROBERTS, J. S. SHIPMAN, Two-point boundary value problems. Shooting methods, Elsevier, New York, London, Amsterdam 1972.

Copyright © 2014 by Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, Poland