10.24423/EngTrans.996.20190815
Approaches to the Determination of the Working Area of Parallel Robots and the Analysis of Their Geometric Characteristics
References
Tagiyev N.R., Alizade R.I., Duffy J., A forward and reverse displacement analysis of an in-parallel spherical manipulator, Mechanism and Machine Theory, 29(1): 125–137, 1994.
Angeles J., Bulca F., Zsombor-Murray P.J., On the workspace determination of spherical serial and platform mechanisms, Mechanism and Machine Theory, 34(3): 497–512, 1999.
Turkin A., Rybak L., Evtushenko Y., Posypkin M., On the dependency problem when approximating a solution set of a system of nonlinear inequalities, 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 1481–1484, 2018, https://doi.org/10.1109/EIConRus.2018.8317377.
Posypkin M., Evtushenko Yu., A deterministic approach to global box-constrained optimization, Optimization Letters, 7(4):819–829, 2013, https://link.springer.com/article/10.1007/s11590-012-0452-1.
Rybak L., Evtushenko Yu., Posypkin M., Turkin A., Approximating a solution set of nonlinear inequalities, Journal of Global Optimization, 71: 1–17, 2017, https://doi.org/10.1007/s10898-017-0576-z.
Sigal I., Evtushenko Yu., Posypkin M., Framework for parallel large-scale global optimization, Computer Science-Research and Development, 23(3–4): 211–215, 2009, https://doi.org/10.1007/s00450-009-0083-7.
Rybak L.A., Turkin A.V., Evtushenko Yu.G., Posypkin M.A., Numerical method for approximating the solution set of a system of non-linear inequalities, International Journal of Open Information Technologies, 4(12): 1–6, 2016, http://injoit.org/index.php/j1/article/view/369.
Evtushenko Yu.G., Numerical methods for finding global extrema (case of a non-uniform mesh), USSR ComputationalMathematics and Mathematical Physics, 11(6): 38–54, 1971, https://doi.org/10.1016/0041-5553(71)90065-6.
Kraynev A.F., Glazunov V.A., Koliskor A.Sh., Spatial Mechanisms of Parallel Structure [in Russian: Prostranstvennye mekhanizmy parallelnoi struktury], Moscow: Nauka, 1991.
Malyshev D.I., Posypkin M.A., Gorchakov A.Yu., Ignatov A.D., Parallel algorithm for approximating the work space of a robot, International Journal of Open Information Technologies, 7(1): 1–7, 2019.
Merlet J.P., Parallel robots, Springer Publishing Company, Incorporated, 2006. https://www.springer.com/kr/book/9781402041327.
Gosselin C., Kun S., Structural synthesis of parallel mechanisms. M.: Fizmatlit, 2012.
Jaulin L., Kieffer M., Didrit O., Walter É.,, Applied interval analysis: with examples in parameter and state estimation, robust control and robotics, Springer Science & Business Media, 2001, https://doi.org/10.1007/978-1-4471-0249-6.
Husty M.L., On the workspace of planar three-legged platforms, World Automation Congress, 3: 339–344, 1996.
Niederreiter H.,. Low-discrepancy and low-dispersion sequences, Journal of Number Theory, 30(1): 51–70, 1988.
Posypkin M., Usov A., Implementation and verification of global optimization benchmark problems, Open Engineering, 7(1): 470–478, ????.
Clavel R., Design of a fast parallel robot at 4 degrees of freedom [in French: Conception d’un robot parallele rapide a 4 degres de liberte], EPFL, Lausanne, 1991. http://dx.doi.org/10.5075/epfl-thesis-925.
Chichvarin A.V., Rybak L.A., Erzhukov V.V., Effective methods for solving problems of kinematics and dynamics of a machine tool with a parallel structure, M.: Fizmatlit, 2011.
Stan S.D., Balan R., Maties V., Optimization of a 2 dof micro parallel robot using genetic algorithms, [in:] Frontiers in Evolutionary Robotics, Hitoshi Iba [Ed.], University of Tokyo, Japan, pp. 465–490, 2007, https://doi.org/10.1109/ICMECH.2007.4280011.
Kuzmina V.S., Virabyan L.G., Khalapyan S.Y., Optimization of the positioning trajectory of the planar parallel robot output link, Bulletin of BSTU named after V.G. Shukhov, 9: 106–113, 2018, http://vestnik_rus.bstu.ru/shared/attachments/184909.
DOI: 10.24423/EngTrans.996.20190815