Engineering Transactions, 49, 2-3, pp. 283–313, 2001
10.24423/engtrans.561.2001

Modelling Electric and Elastic Properties of Cartilage

A. Gałka
Polish Academy of Sciences
Poland

J.J. Telega
Polish Academy of Sciences
Poland

R. Wojnar
Polish Academy of Sciences
Poland

The aim of the paper is to propose a novel approach to modelling the macroscopic electromechanical behaviour of cartilage within the framework of linear response. The cartilage is treated as multiphase material with four constituents: anions, cations, viscous fluid and piezoelectric skeleton. The macroscopic equations were derived by using homogenization methods. Only stationary flow was studied. The elastic macroscopic moduli were determined by assuming, after BFLOOM [60], the honeycomb microstructure of the cartilage. Mathematical developments are preceded by a review of structure and properties of a cartilage.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

A. BENNINGHOFF, Form and Bau der Gelenkknorpel in ihren Beziehungen zur Funktion [In:] Der Aufbau des Gelenkknorpels in seinen Beziehungen zur Funktion, Zweiter Teil, Z. Zellforsch. mikr. Anat. 2, 783–862, 1925.

A. MAROUDAS, Physicochemical properties of articular cartilage [In:] Adult articular cartilage, M.A.R. FREEMAN [Ed.], Pitman Medical, Kent, UK 1979.

R.A. STOCKWELL, Biology of cartilage cells, Cambridge University Press, Cambridge 1979.

N.D. BROOM and D.B. MYERS, A study of the structural response of wet hyaline cartilage to various loading situations, Connect. Tiss. Res., 7, 227–237, 1980.

C. VAN MOW, F. GUILAK, R. TRAN-SON-TAY, R.M. HOCHMUTH, Cell mechanics and cellular engineering, Springer Verlag, New York 1994.

K.J. GOOCH and C. J. TENNANT, Mechanical forces: their effects on cells and tissues, Springer Verlag, Berlin, New York 1997.

J.F. STOLTZ, X. WANG, S. MULLER and V. LABRADOR, Introduction to the mechanobiology of cells, App. Mech. Engng., 4, 177–183, 1999.

D.S. HOWELL, B.V. TREADWELL, and S.B. TRIPPEL, Etiopathogenesis of osteoarthritis [In:] Osteoarthritis, Diagnosis and Medical/Surgical Management, R. W. MOSKOWITZ, D. S. HOWELL, V.M. GOLDBERG and V.C. HASKALL [Eds.], Raven Press, New York 1992.

E.L. RADIN, R.B. MARTIN, D.B. BURR, B. CATERSON, R. D. BOYD et al, Effects of mechanical loading on the tissues of the rabbit knee, J. Orthop. Res., 2, 221–234, 1984.

J.J. TELEGA, Piezoelectricity and homogenization. Application to biomechanics [In:] Continuum Models and Discrete Systems, Vol. 2, G.A. MAUGIN [Ed.], 220–229, Longman, Essex 1991.

W.Y. GU, W.M. LAI and V.C. MOW, Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage, J. Biomech., 26, 709–723, 1993.

W. BIELSKI and J.J. TELEGA, Effective properties of geomaterials: rocks and porous media, Publications of Inst. of Geophysics Pol. Ac. Sci., Fasc. A–26 (285), Warsaw 1997.

R. WOJNAR and J.J. TELEGA, Electrokinetics in dielectric porous media [In:] Problems of Environmental and Damage Mechanics, W. KOSIŃSKI, R. de BOER, D. GROSS, Wydawnictwa IPPT PAN, 97–136, Warszawa 1997.

W.Y. GU, W.M. LAI and V.C. MOW, A mixture theory for charged–hydrated soft tissues containing multi–electrolytes: passive transport and swelling behaviors, J. Biomech. Engng., 120, 169–180, 1998.

A.J. GRODZINSKY, Electrochemical and physicochemical properties of connective tissue, CRC Critical Reviews in Biomed. Engng., 9, 133–199, 1983.

A. GAŁKA, J.J. TELEGA and R. WOJNAR, Equations of electrokinetics and flow of electrolytes in porous media, J. Techn. Physics, 35, 49–59, 1994.

J.J. TELEGA and R. WOJNAR, Flow of conductive fluids through poroelastic media with piezoelectric properties, J. Theor. App. Mech., 36, 775–794, 1998

J.J. TELEGA and R. WOJNAR, Cartilage as an anisotropic multiphase material, Acta Bioneg. Biomech., 1, 499–502, 1999.

J.J. TELEGA and R. WOJNAR, Flow of electrolyte through porous piezoelectric medium: macroscopic equations, C. R. Acad. Sci., 328, Série IIb, 225–230, Paris 2000.

W. BIELSKI, J.J. TELEGA and R. WOJNAR, Macroscopic equations for nonstationary flow of Stokesian fluid through porous elastic medium, Arch. Mech., 51, 243–274, 1999.

VAN C. MOW, A. RATCLIFFE and A.R. POOLE, Cartilage and diarthrodial joints as paradigms for hierachical materials and structures, Biomaterials, 13, 67–96, 1992.

VAN C. MOW and A. RATCLIFFE, Structure and functions of articular cartilage and meniscus [In:] Basic Orthopaedic Biomechanics, V.C. MOW and W.C. HAYES [Eds.], Lippincott-Raven Publishers, Philadelphia 1997.

E.J. KUCHARZ, The collagens: Biochemistry and pathophysiology, Springer Verlag, Berlin 1992.

G. MEACHIM and R.A. STOCKWELL, The matrix [In:] Adult articular cartilage, Second edition, M.A.R. FREEMAN [Eds.], Pitman Medical, Kent, UK 1979.

P.M. COWAN, A.C.T. NORTH and J.T. RANDALL, X-ray diffraction studies of collagen fibres, Symp. Soc. Exp. Biol., 9, 115–126, 1955.

N. SASAKI and S. ODAJIMA, Stress-strain curve and Young's modulus of a collagen molecule as determined by the X-ray diffraction technique, J. Biomech., 29, 655–658, 1996.

J.P.G. URBAN, The chondrocyte: a cell under pressure, Br. J. Rheumatol., 33, 901–908, 1994.

V.C. MOW, A. RATCLIFFE, M.P. ROSENWASSER and J.A. BUCKWALTER, Experimental studies on repair of large osteochondral defects at a high weight bearing area of the knee joint: a tissue enegineering study, J. Biomech. Engng., 113, 198–207, 1991.

M.T. DE WITT, C.J. HANDLEY, B.W. OOCHES and D.A. LOWTHER, In vitro response to mechanical loading. The effect of a short term mechanical tension, Commt. Tiss. Res., 12, 97–109, 1984.

F. GUILAK, Compression-induced changes in the shape and volume of the chondrocyte nucleus, J. Biomech., 28, 1529–1542, 1995.

W.R. JONES, H.P. TING-BEALL, G.M. LEE, S.S. KELLEY, R.M. HOCHMUTH and F. GUILAK, Mechanical properties of human chondrocytes and chondrons from normal and osteoarthritic cartilage, Trans. Orthop. Res. Soc., 22, 199, 1997.

D. SHIN and K.A. ATHANASIOU, Biomechanical properties of the individual cell, Trans. Orthop. Res. Soc., 22, 352, 1997.

J.Z. Wu, W. HERZOG and M. EPSTEIN, Modelling of location- and time-dependent deformation of chondrocytes during cartilage loading, J. Biomech., 32, 563–572, 1999.

R.W. ZIMMERMANN, Elastic moduli of solid containing spherical inclusions, Mech. Material, 12, 17–24, 1991.

R.L. SMITH, B.S. DONLIN, M.K. GUPTA, M. MOHTAI, P. DAS, D.R. CARTER, J. COOKE, G. GIBBONS, N. HUTCHINSON and D.J. SHURMAN, Effect of fluid – induced shear on articular chondrocyte morphology and metabolism in vitro, J. Orthop. Res., 13, 824–831, 1995.

W.M. LAI, J.S. HOU, and V.C. MOW, A triphasic theory for the swelling and deformation behaviors of articular cartilage, J. Biomech. Engng., 113, 245–258, 1991.

F.G. DONNAN, The theory of membrane equilibria, Chemical Rev., 1, 73–90, 1924.

VAN C. MOW, M.H. HOLMES and W.M. LAI, Fluid transport and mechanical properties of articular cartilage: a review, J. of Biomech., 17, 377–394, 1984.

J.M. OWENS, W.M. LAI and V.C. MOW, Biomechanical effects due to Na$^+$ and Ca$^{2+}$ exchange in articular cartilage, Trans. Orthop. Res. Soc., 16, 360, 1991.

W.Y. GU, W.M. LAI and V.C. MOW, A mixture theory for charged hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors, J. Biomech. Engng., 120, 169–180, 1998.

Y. LANIR, J. SEYBOLD, R. SCHNEIDERMAN and J.M. HUYGHE, Partition and diffusion of sodium and chloride ions in soft charged foam: the effect of external salt concentration and mechanical deformation, Tissue Engng., 4, 365–378, 1998.

A.J.H. FRIJNS, J.M. HUYGHE and J.D. JANSSEN, A validation of the quadriphasic mixture theory for intervertebral disc tissue, Int. J. Engng Sci., 35, 1419–1429, 1998.

J.M. HUYGHE and J.D. JANSSEN, Thermo-chemo-electro-mechanical formulation of saturated charged porous solids, Transport in Porous Media, 34, 129–141, 1999.

J.M. HUYGHE, Intra-extrafibrillar mixture formulation of soft charged hydrated tissues, J. Theor. App. Mech., 37, 519–536, 1999.

L.D. LANDAU and E.M. LIFSHITZ, Electrodynamics of continuous media [in Russian], Gosud. Izd. Tekhn. Teoret. Literat., Moskva 1957.

E.M. LIFSHITS, L.D. PITAYEVSKIY, Physical kinetics [in Russian], Nauka, Moskva 1979.

M. SUFFCZYSISKI , Elektrodynamika, PWN, Warszawa 1980.

R.J. HUNTER, Zeta potential in colloid science, Academic Press, London 1981.

A. TESO, A.D. FILHO and A.A. NETO, Solution of the Poisson-Boltzmann equation for a system with four ionic species, J. Math. Biol., 35, 814–824, 1997.

R. UKLEJEWSKI, Electromechanical potentials in a fluid-filled cortical bone: initial stress state in osteonic lamellae, piezoelectricity and streaming potential roles — a theory, Biocybernetics and Biomedical Engng., 13, 97–112, 1993.

R. UKLEJEWSKI, Initial piezoelectric polarization of cortical bone matrix as a determinant of the electrokinetic potential Zeta of the bone osteonic lamellae as mechanoelectret, J. Biomechanics, 27, 339–360, 1994.

G. ALLAIRE, Homogenization of the Stokes flow in a connected porous medium, Asymptotic Anal., 2, 203–222, 1989.

G. ALLAIRE, Continuity of the Darcy's law in the low–volume fraction limit, Annali Scuola Norm. Sup. Pisa, Sci. Fis. e Mat., Ser. IV, 18, 475–499, 1991.

J.L. AURIAULT and E. SANCHEZ-PALENCIA, Etude du comportement macroscopique d'un milieu poreux sature deformable, J. Mee., 16, 575–603, 1977.

J.L. AURIAULT and T. STRZELECKI, On the electro-osmotic flow in a saturated porous medium, Int. J. Engng. Sci., 19, 915–928, 1981.

A. GAŁKA, J.J. TELEGA and R. WOJNAR, Homogenization and thermos-piezoelectricity, Mech. Res. Comm., 19, 315–324, 1992.

A. BENSOUSAN, J.-L. LIONS and G. PAPANICOLAOU, Asymptotic analysis of periodic structures, North–Holland, Amsterdam 1978.

T. LEWIŃSKI, J.J. TELEGA, Plates, laminates and shells: Asymptotic analysis and homogenization, World Scientific, Singapore 2000.

N.D. BROOM and D.L. MARRA, New structural concepts of articular cartilage demonstrated with a physical model, Connect. Tiss. Res., 14, 1–8, 1985.

N.D. BROOM, Connective tissue function and malfunction: a biomechanical perspective, The Third George Swanson Christie Memorial Lecture Pathology, 20, 93–104, 1988.

A. GAŁKA, J.J. TELEGA, S. TOKARZEWSKI, Effective moduli for a trabecular bone with regular microstructure, Acta Bioeng. Biomech., 2, Suplement 1, 555–560, 2000.

L.J. GIBSON, M.F. ASHBY, Cellular solids, structure and properties, Pergamon Press, Oxford 1988.

S. JEMIOŁO and J.J. TELEGA, Isotropic and transversely isotropic hyperelastic models of soft tissues, Part I & II, Engng. Trans., 49, 2–3, 2001.

Y.C. FUNG, Biomechanics: mechanical properties of living tissues, Springer Verlag, New York 1993

S. JEMIOŁO and J.J. TELEGA, On modelling transversally isotropic materials undergoing large deformations and application to modelling soft tissues, Mech. Res. Comm., submitted

J.J. TELEGA, A. GAŁKA and S. TOKARZEWSKI, Application of reiterated homogenization to determination of effective moduli of a compact bone, J. Theor. Appl. Mech., 37, 687–706, 1999.

A. GAŁKA, J.J. TELEGA and R. WOJNAR, Macroscopic elastic properties of cartilage, Acta Bioeng. Biomech., 2, Suplement 1, 187–192, 2000.




DOI: 10.24423/engtrans.561.2001