**65**, 2, pp. 319–333, 2017

### Nonlocal Critical Velocities of Fluid Conveying Clamped-Pinned Single-Walled Carbon Nanotubes Subjected to Axial Magnetic Field

**Keywords**: critical flow velocity; Single-Walled Carbon Nano-Tubes; SWCNT; non-local; axial magnetic field

**Full Text:**PDF

#### References

Yoon J., Ru C.Q., Mioduchowski A., Vibration and instability of carbon nanotubes conveying fluid, Composites Science and Technology, 65(9): 1326–1336, 2005, doi: 10.1016/j.compscitech.2004.12.002.

Reddy C.D., Lu C., Rajendran S., Liew K.M., Free vibration analysis of fluid-conveying single-walled carbon nanotubes, Applied Physics Letters, 90(13): 133122, 2007, doi: http://dx.doi.org/10.1063/1.2717554.

Chang W.J., Lee H.L., Free vibration of a single-walled carbon nanotube containing a fluid flow using the Timoshenko beam model, Physics Letters A, 373(10): 982–985, 2009.

Cemal Eringen A.C., Edelen G.B., On nonlocal elasticity, International Journal of Engineering Science, 10(3): 233–248, 1972.

Cemal Eringen A.C., Nonlocal continuum field theories, Springer-Verlag, New York 2002.

Lee H. L., Chang W.J., Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory, Journal of Applied Physics, 103(2): 024302, 2008, doi: 10.1063/1.2822099.

Lee H.L., Chang W.J., Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium, Physica E: Low-dimensional Systems and Nanostructures, 41(4): 529–532, 2009, doi: 10.1016/j.physe.2008.10.002.

Wang Q., Varadan V.K., Vibration of carbon nanotubes studied using nonlocal continuum mechanics, Smart Materials and Structures, 15(2): 659–666, 2006, doi: 10.1088/0964-1726/15/2/050.

Tounsi A., Heireche H., Bedia E.A.A., Comment on “Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory”, Journal of Applied Physics, 105(12): 126105, 2009, doi: 10.1063/1.3153960.

Wang L., Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory, Physica E: Low-dimensional Systems and Nanostructures, 41(10): 1835–1840, 2009, doi: 10.1016/j.physe.2009.07.011.

Farshidianfar A., Ghassabi A.A., Farshidianfar M.H., Transverse vibration of fluid conveying carbon nanotubes embedded in two-parameter elastic medium, Proceedings of the 18th International Congress on Sound and Vibration, Rio de Janeiro, Brazil, 2011.

Ghorbanpour Arani A., Amir S., Nonlocal vibration of embedded coupled cnts conveying fluid under thermo-magnetic fields via Ritz method, Journal of Solid Mechanics, 5(2): 206–215, 2013.

Feng Liang, Bao Ridong, Stability Analysis of a Fluid-conveying Carbon Nanotube with consideration of Nonlocal and Surface Effects [in Chinese], Mechanics in Engineering, 36(1): 48–53, 2014.

Kiani K., Vibration and instability of a single-walled carbon nanotube in a three-dimensional magnetic field, Journal of Physics and Chemistry of Solids, 75(1): 15–22, 2014, doi: 10.1016/j.jpcs.2013.07.022.

Ponnusamy P., Amuthalakshmi A., Influence of Thermal and Longitudinal Magnetic Field on Vibration Response of a Fluid Conveying Double Walled Carbon Nanotube Embedded in an Elastic Medium, Journal of Computational and Theoretical Nanoscience, 11(12): 2570–2577, 2014, doi: 10.1166/jctn.2014.3674.

Cajić M.S., Lazarević P.M., Karličić D.Z., Nonlocal frequency analysis of a nanobeam under axial magnetic field using finite element method, 8th GRACM International Congress on Computational Mechanics, Volos, Greece, 2015, http://8gracm.mie.uth.gr/Papers/Session%20D1-E0/M.%20Lazarevic.pdf.

Hosseini M., Sadeghi-Goughari M., Vibration and instability analysis of nanotubes conveying fluid subjected to a longitudinal magnetic field, Applied Mathematical Modeling, 40(4): 2560–2576, 2016, doi: 10.1016/j.apm.2015.09.106.

Rao C.K., Simha H.S., Critical velocity of fluid conveying pipes resting on two-parameter foundation, Journal of Sound and Vibration, 302(1–2): 387–397, 2007, doi: 10.1016/j.jsv.2006.11.007.

Rao S.S., Mechanical vibrations, Addison-Wesley, MA, 1986.

Felgar P., Formulas for integrals containing characteristic functions of a vibrating beam, University of Texas Circular No. 14, Bureau of Engineering Research, Austin, Texas, 1950.

Rao C.K., Simha H.S., Vibrations of fluid-conveying pipes resting on two-parameter foundation, The Open Acoustics Journal, 1(1): 24–33, 2008, doi: 10.2174/1874837600801010024.

Ni Q., Zhang Z.L., Wang L., Application of the differential transformation method to vibration analysis of pipes conveying fluid, Applied Mathematics and Computation, 217(16): 7028–7038, 2011, doi: 10.1016/j.amc.2011.01.116.

Païdoussis M.P., Fluid-structure interactions: slender structures and axial flow, Academic Press, London, 1998.