Engineering Transactions, 8, 3, pp. 465-508, 1960

Odkształcenia Powolne Betonu

A. Brandt
Instytut Podstawowych Problemów Techniki PAN
Poland

K. Thiel
Instytut Podstawowych Problemów Techniki PAN
Poland

This is a survey of modern theories and of results of investigations concerning the problem of slow deformations of concrete. This definition contains the shrinkage and swelling of unloaded concrete, described in Sec. 3, the creep under a load described in Sec. 4 and the thermal deformations not treated in the present paper. The word «slow» is used to distinguish the processes described from instant deformations appearing immediately after the load is applied. Volume changes of unloaded concrete start instantly after the concrete mixture is prepared. First, the rate of deformation is high, then it decreases under invariable external conditions and tends to stabilization. In Table 5 approximate values are presented, illustrating the shrinkage process in time and in Table 2 approximate data are given for total shrinkage deformations under various conditions.
According to the hypotheses now in use, the shrinkage of concrete is connected with two processes: the drying of concrete and the hydration of cement. The drying of concrete results in changes of tension in capillaries partially filled with water and a gradual increase of the real stresses and strains of the rigid «framework» of concrete. The hydration of the anhydrous salts contained in the cement is connected with a reduction of the volume of cement mortar. The shrinkage and swelling processes is influenced by the curing conditions and the choice of components of the concrete. The concrete shrinks when drying out, and swells if water is absorbed from the ambient medium. The conditions of the initial period of concrete maturing are of particular importance, the shrinkage being of partially irreversible nature. In other cases, the concrete; independently of its age, is adjusted to the ambient conditions by absorbing or evaporating water and the volume changes involved. For the first 24 hours the shrinkage is represented at Fig. 2. This is a very important part of the process, observed and considered since recently. Before, the deformations were measured first after more than ten hours due to the difficulty of measuring fresh concrete mass. The shrinkage deformations increase with the quantity of cement and with the volume of water exceeding that necessary for the hydration process which has to be evaporated. An aggregate of low deformability and of carefully chosen grain size constitutes a rigid framework showing small deformations under the action of shrinkage stresses due to the cement mortar.
Finally, a number of tentative forecasts of the process and the final values of shrinkage are given in Sec. 3. By the name of concrete creep we understand the difference between the total slow deformation and the shrinkage in a loaded concrete. The creep process has a character approaching that of shrinkage but the deformations grow more rapidly. Approximate values are collated in Table 6. The creep phenomena consists in concrete consolidation under load. First, the load is taken up by water and the «framework» of the concrete, but the stresses and strains in the framework grow progressively due to water filtration. As the share of water decreases the process becomes stabilized. The experimental relation between the shrinkage and the creep is not yet entirely explained although the dependence of these two phenomena is doubtless.. The decisive factor for creep is the way in which the concrete is loaded. Small stresses in the concrete do not cause creep. If they increase up to 50% of the strength of concrete the stress-strain relation has a linear character. Further increase of stress is connected with a rapid increase of retarded deformations. Concrete after a long curing period reaches sufficient strength and shows smaller creep than a younger one subjected to the same load. The creep decreases if more moisture is contained in the ambient medium (Fig. 16). Concretes of small cement content and small strength and also those with too high cement content show considerable at Fig. 19. creep. The influence of the water-cement ratio is shown. Next, the influence of the size of the element on the creep is mentioned. The phenomena during the unloading process of the concrete and for combined states of load are described in brief.
Sec. 4, dealing with creep, ends with some tentative mathematical functions describing these phenomena.
The following principal directions may be, discerned in the investigations of slow deformations of concrete: laboratory tests of concrete specimens, measurements of deformations of real structures and pure theoretical work. The object of generalization of these works is to elaborate a theory of concrete deformations. They are continued in many scientific centres. It encounters, however, considerable difficulties due to the number and variety of intervening parameters. The hypotheses and the theories created constitute therefore successive approximations, each of them yielding to the next one, more accurate or more general.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

[in Russian]

H. W. BREWER i R. W. BURROWS, Le ciment grossierement broyé fournit un béton plus dura-

ble, 1951.

B. BUKOWSKI, Technologia betonów i zapraw, ITB, Warszawa 1953.

B. BUKOWSKI, Szczelność kruszywa w obszarze miedzy optymalnym i granicznym w|c, Arch. Inzyn. lad., 1-2, 1957.

B. BUKOWSKI, Morfologia rys w konstrukcjach żelbetowych i betonowych, Arch. Inzyn. lad., 4, 1957.

Z. BYCHAWSKI, Resolving Kernel of the Volterra Equation in the Case of the Generalized Creep Function, Arch. Mech. Stos., 2, 9 (1957).

Z. BYCHAWSKI, Odkształcenia opóźnione w betonie, Arch. Inzyn. ladow., 2 (1956).

R. E. DAVIS, H. E. DAVIS, E. H. BROWN, Plastic Flow and Volume Changes of Concrete, Proc. ASTM, 37 (1937), s. 317.

R. E. DAVIS, H. E. DAVIS, J. S. HAMILTON, Plastic Flow of Concrete under Sustained Stress, Proc. ASTM, 34 (1934), S. 354.

F. DISCHINGER, Untersuchungen über die Knicksicherheit, die elastische Verformung und das Kriechen des Betons bei Bogenbrücken, Bauingenieur 33/34, 35/36, 39/40, 18 (1937).

C. M. DUKES, H. E. DAVIS, Some Properties of Concrete under Sustained Combined Stresses, Proc. Amer. Soc. Testing Materials, 44 (1944), s. 888.

M. DURIEZ, Traité de matériaux de construction, Dunod 1950.

R. DUTRON, Le retrait des ciments, mortiers et bétons, Bull. Tech. Nr 23 Labor. Rech. Contr. Group. Profes. Fabr. Ciment de Belgique, Bruksela 1934.

C. EIMER, Podstawy teorii pełzania ustrojów hiperstatycznych wstępnie sprężonych, Rozpr.

inzyn., 3, 5 (1957).

C. EIMBR, Obliczenia reologiczne konstrukcji spresonych, Arch. Inzyn. lad., 3, 1958.

N. ESQUILLAN, G. LACOMBE, P. FAESSEL, R. PERZO, La construction du Palais des Expositions du Centre National des Industries et Techniques au Rond Point de la Défence, Annales ITBTP, 137, 1959.

U. FINSTERWALDER, Ergebnisse von Kriech- und Schwindmessungen an Spannbetonbauten, Beton- und Stahlbetonbau, 5, 1958.

E. FREYSSINET, Etudes sur les déformations lentes des ciments en retrait, Congr. Int. Béton, Béton Armé, Liége 1930.

E. FREYSSINET, Une révolution dans les techniques du béton, Eyrolles, 1936.

E. GIANGRACO, Recherches expérimentales sur le fluage des ciments, Ann. ITBTP, 1954.

W. H. GLANVILLE, Creep of Concrete under Load, The Structural Engineer, 1933.

W. H. GLANVILLE, F. G. THOMAS, Further Investigation on the Creep or Flow of Concrete under Load, Building Res. Tech. Pap. Nr 21, 1929.

Y. GUYON, Béton Précontraint, wyd. 3, Eyrolles 1958.

[in Russian]

H. HUMMEL, Von Schwinden Zementgebundener Massen, seiner Messung und seinen Aus- wirkungen, Zement-Kalk-Gips, 8, 1954.

A. ILANTZIS, La résistance en traction et la fissuration des pâtes purés de ciment, Ann. I'TBTP, 1958, 131.

A. ILANTZIS, Sur lévaporation de l'eau dans les prismes de mortier determination des coefficients de diffusivité, Cahiers Rech. Théor. Expér., Matér. Struct., Paryz 1960.

[in Russian]

A. KOBYLIŃSKI, Technologia betonów i zapraw, Warszawa 1949.

T. KLUZ, Betony o wysokiej wytrzymałości, Inzyn. Budow., 12, 1953.

W. KUCZYŃSKI, Betony konstrukcyjne projektowane metoda kolejnych przybliżeń (iteracji),

Bud. i Arch., Warszawa 1956.

H. LAFUMA, Retrait et fissuration des ciments, mortiers et bétons, Ann. ITBTP, 1956.

H. LAFUMA, Les Ciments, Centre Haut, Etud. Bét., Bét. Armé, Bét.. Précontr., 1958/59.

Le CAMUS, Recherches expérimentales sur la déformation du béton et du béton armé, Ann; ITBTP, 32, 33, 34, 1957.

F. LÉVI, Le Fluage, Centre Haut. Etud. Constr., 1959.

J. LEPÉVRE, Mesure des variations linéaires d'une pâte pure de ciment ou d'une béton à bartir de sa mise en place, Lab. Bat. Trav. Publ., Paryż 1959.

R. L'HERMITE, Le vetrait des ciments, mortiers et bétons, Ann. ITBTP, 37, 1947.

R. L'HERMITE, Idées actuelles sur la technologie du béton, Docum. Tech. Bat. Trav. Publ., Paryż 1955.

R. L'HERMITE, Que savons-nous de la déformation plastique et du fluage du béton, Ann. ITBTP, 1957.

M. MAMILLAN, Etude SUY le fluage de béton, Ann. ITBTP, 134, 1959.

G. A. MANEY, Concrete under Sustained Working Loads; Evidence that shrinkage dominates time yield, Proc. Amer. Soc. Test. Mater., Vol: 40, 1941, s. 1021.

G. OBERTI, Deformazioni anelastische del calcestruzzo della diga di Oziglietta, Giorn. Gen. Civ., 1946.

W. OLSZAK, Konstrukcje wstępne sprężone, PWN 1955.

G. PICKETT, The Effect of Change in Moisture Content of the Creep of Concrete under a Sustained Load, Proc. Amer. Concrete Inst., 38, 1942, S. 333.

G. PICKETT, Shrinkage Stresses in Concrete, CZ. 1, J. Amer. Concrete. Inst., 3, 17 (1946).

G. PICKETT, Shrinkage Stresses in Concrete, cz. 2, J. Amer. Concrete Inst., 4, 17 (1946).

J. PIETRZYKOWSKI, W poszukiwaniu najwłaściwszej metody projektowania mieszanki betonowej, Inzyn. Budow., 12, 1955 i 1, 1965.

M. REINER, Twelve Lectures on Theoretical Rheology, wyd. 2, 1949.

J. R. ROBINSON, Cours de béton armé, Ecole Nationale des Ponts et Chaussées, 1958/59.

M. Ros, Vorgespannter Beton, EMPA-Bericht, 155, 1946.

A.D. Ross, Creep and Shrinkage in Plain, Reinforced and Prestressed Concrete, J. Inst. Civ. Eng., 1943.

A. D. Ross, Concrete Creep Data, The Struct. Eng., 1937, s. 314, 1946 i 1947.

A. D. Ross, The Creep of Portland Blast Furnace Concrete, J. Inst. Civ. Eng., 8 (1948), 34.

A. D. Ross, Experiments on the Creep of Concrete under Two-dimensional Stressing, Mag. Concrete Res., 16, 6 (1954).

H. B. SEED, Creep and Shrinkage in Reinforced Concrete Structures, Engineering, 1947.

I. R. SHANK, The Mechanics of Plastic Flow of Concrete, Proc. ACI, 1936.

L. G. STRAUB, Plastic Flow in Concrete Arches, Proc. ASCE, 1930.

F. G. THOMAS, A Conception of the Creep of Unreinforced Concrete and an Estimation of the Limiting Values, Struct. Eng., 2, 1933, s. 69.

E. TORROJA, A. PAEZ, Set Concrete and Reinforced Concrete, w zbiorze pod redakcja A. REINERA «Building Materials», Amsterdam 1954.

F. VOGT, Notes on the Effect of Shrinkage on the Deformation of Concrete under Sustained Loads, Oslo 1949.

O, WAGNER, Das Kriechen, Ernst und Sohn, Berlin 1958.

G. WASHA i G. FLUCK, Effect of Sustained Loading on Compressive Strength and Modulus of Elasticity of Concrete, J. Amer. Concrete Inst., 1950.

Z. WASIUTYÁSKI, O Odkształceniach betonu, Prace Katedry Budowy Mostów Politechniki Warszawskiej, 1958.

Seminarium, Que savont-nous de la deformation plastique et du fluage du béton, Ann. ITBTP, 1959.

C. LEFEVRE, Retrait et fissuration des enduits, Ann. ITBTP, 132, 1958.

C. LEFEVRE, Méthod d'essai de fissuration du béton, Ann. ITBTP, 132, 1958.

J. DELARUE, Fluage et béton précontraint, Ann. ITBTP, 149, 1960.