Naprężenia Sprężysto-Plastyczne w Pierścieniu Wywołane Działaniem Pewnego Pola Temperatury
The quantities § and y are found from the equilibrium condition. The results obtained may be considered to be sufficiently accurate for temperatures of the ring not exceeding 250–350°C. For higher temperatures the dependency of E1, a and y on the temperature cannot be disregarded for most materials. The results obtained may then be treated as a first approximation to the accurate solution. The results are confronted with those obtained by Wilhoit for a ring insulated on the upper and lower surface. The results obtained by Wilhoit and those in the present paper are found to differ but slightly from the qualitative viewpoint.
References
H.S. CARSLAW, J. C. JAEGER, Conduction of Heat in Solids, Oxford 1960.
CHIEH-CHIEN CHANG, WEN-HWA CHU, Stresses in a Metal Tube under Both High Radial Temperature Variation and Internal Pressure, J. of Appl. Mech., Vol. 21.
W. DERSKI, The State of Stress in a Thin Circular Ring Due to a Non-Stability Temperature Field, Arch. Mech. Stos., 3, 10 (1958).
[in Russian]
[in Russian]
[in Russian]
A. KOPFT, Logarithmisch-trigonometrisches Handbuch, Berlin 1941.
B. MELAN, H. PARKUS, Wärmespannungen infolge stationärer Temperaturfelder, Wien 1953.
M. SOKOŁOWSKI, Naprężenia cieplne w powłoce kulistej oraz cylindrycznej w przypadku materiałów o własnościach zależnych od temperatury, Rozpr. Inzyn., 4, 8 (1960).
S. TIMOSHENKO, J. N. GOODIER, Theory of Elasticity, New York-Toronto-London 1958.
G. N. WATSON, A Treatise on the Theory of Bessel Functions, Oxford 1941.
J. C. WILHOIT, Jr., Elastic-Plastic Stresses in Rings under Steady State Radial Temperature Variation, Proceedings of the third U.S. National Congress of Applied Mechanics.