Engineering Transactions, 14, 2, pp. 241-262, 1966

Przypadek Obrotowej Symetrii Powłok o Małej Wyniosłości

W. Pietraszkiewicz
Politechnika Gdańska
Poland

The object of the considerations are equations of shells or revolution on the grounds of the linear theory of shallow shells. The case of rotational symmetry is studied in detail. The possibility of using membrane solutions for particular solutions is analysed, some conditions for this being derived. Some cases of shells and loads for which a membrane solution coincides with the accurate particular integral of the equations are indicated. Accurate solutions are obtained for uniformly loaded paraboloidal and logarithmic shells. As an example the axially symmetric problem of a uniformly loaded single column shell roof of the paraboloidal and logarithmical type and negative Gauss curvature is solved. The above conditions for the numerical values are not fulfilled in this
example. The differences between the accurate results and the solution obtained by using the membrane theory solution as a particular integral are greater than the accuracy of the linear theory of shallow shells.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

A. E. GREEN, W. ZERNA, Theoretical Elasticity, Oxford 1960. 2. E. REISSNER, On Some Problems in Shell Theory, Structural Mechanics, Proceed. 1-st Symp. Naval Str. Mech., Stanford Univ., 1958, Pergamon Pr., 1960, 74-114.

E. REISSNER, Stresses and Small Displacements of Shallow Spherical Shells, J. Math. and Phys., 25, 80-85, 279-300, 1946.

B. 3. Власов, Общая теория оболочек, Москва 1949.

W. FLÜGGE, Stresses in Shells, Springer-Verlag, 1960.

H. DUDDECK, Biegetheorie der allgemeinen Rotationsschalen mit schwacher Veränderlichkeit

der Schalenkrümmungen, Ing.-Arch., 5, 33 (1964).

H. DUDDECK, Das Randstörungsproblem der technischen Biegetheorie dünner Schalen in drei Korrespondierenden Darstellungen, Oster. Ing. Arch., 1, 17 (1962).

E. REISSNER, On the Determination of Stresses and Displacements for Unsymmetrical Deformations of Shallow Spherical Shells, J. Math. and Phys., 38 (1959), 16-35.

G. A. ORAVAS. Stress and Strain in Thin Shallow Spherical Calotte Shells, Publ. Int. Assoc. Bridge and Struct. Engng., Zurich, 17, 1957, 139-190.

10. Ю. А. Шевляков,- Об интегрировании уравнений равновесия пологих сферических оболо-

чек, Доповцй, № 3, 1955.

N. MC LACHLAN, Funkcje Bessela dla inżynierów, PWN, 1964.

G. N. WATSON, Theory of Bessel Functions, 1944.

13. К. Ф. Черных, Линейная теория оболочек, т. II, Ленинград 1964.

LAO TSU TAO, PAN CHI-HAW, Axisymmetrical Bending of a. Shallow Paraboloidal Shells, Acta Mech. Sinica, 3, 6 (1963).

E. REISSNER, On the Theory of Thin Elastic Shells, Contributions to Appl. Mech. H. Reissner's Anniv. Vol., Michigan 1949.

C. N. DE SILVA, P. M. NAGHDI, Asymptotic Solutions of a Class of Elastic Shells of Revolutions with Variable Thickness, Quart. Appl. Math., 2, 15 (1957), 169-182.

E. REISSNER, Edge effect of symmetrical bending shallow shells of revolutions, Communs Pure and Appl. Math., 2, 12 (1959), 385-398.

О. M. Гузь, Осесимметрическая деформация пологих ортотропных оболочек вращения,

Доповда АН УССР, № 8, 1962.

M.D. Mc ILROY, On the Solutions of the Differential Equations of Conical Shells, Ph. D. Diss., Mass. Inst. of Techn., 1958.

В. В. Новожилов, Теория топких оболочек, Судпромгиз, Ленинград 1962.

Л. С. Носова, Таблицы функций Томсона и их первых производных, АН СССР, Вычислит. Центр., Москва, 1960.

В. Н. Гнатыкив, Частные решения уравнений пологих сферических оболочек под действием некоторых частных нагрузок, Изв. АН СССР, Отд. т. н., Мех, и Машин., 3, 1960.

Г. А. Ван Фо Фи, К задаче равновесия пологой сферической оболочки, Доповод1 АН УССР, 5, 1960, 609-612.

W. PIETRASZKIEWICZ, Niektóre zagadnienia statyki powłok obrotowych o malej wyniosłości, Praca doktorska, Politechnika Gdańska, Gdańsk 1966.