Skończone Odkształcenia Niesprężystych, Wiotkich, Obrotowo-Symetrycznych Powłok Ortotropowych
anelastic deformation. The physical relations are assumed in the form (1.1) or (1.9) which are valid if the directions of orthotropy coincide with the principal directions and remain invariable in the course of the loading process. They relate the true stresses with the logarithmic strains and constitute
a generalization of the Nádai-Davis equations [30], into the case of an orthotropic material.
Tensile stress being the only one transmitted by the shell stresses, two cases are considered in which a) both principal stresses are positive (σ1 > 0, σ2 > 0), b) the circumferential stress is zero (σ2 > 0, σ2 = 0). Finally, an elementary example is given for an infinite orthotropic cylindrical shell subject
to a constant internal pressure and a tensile axial force.
The present paper constitutes a generalization of Refs. [33 and 34] of the present author, to the case of an orthotropic material.
References
[in Russian]
[in Russian]
I. F. BESSELING, A Theory of Plastic Flow for Anisotropic Hardening in Plastic Deformation of an Initially Isotropic Material, National Luchtaartlaboratorium, Amsterdam 1953. 4. P. F. BYRD, M.D. FRIEDMAN, Handbook: of Elliptic Integrals for Engineers and Physicists, Springer, Berlin-Göttingen-Heidelberg 1954.
A. E. DAPPRICH, J. MARIN, TU-LUNG WENG, Strength of thick-walled pressure vessels for materials with directional properties, Trans. ASME, ser. B, 2, 84 (1962), 197-204.
B.A. DAVIS, Yelding and fracture of medium carbon steel under Combined stress, J. Appl. Mech., 1, 1945.
J. E. DORN, Stress-strain relations for anisotropic plastic flow, J. Appl. Phys., 20 (1949), 15-20.
[in Russian]
[in Russian]
[in Russian]
J. C. FISHER, Anisotropic plastic flow, Trans. ASME, 71 (1949), 349-356.
[in Russian]
[in Russian]
[in Russian]
[in Russian]
A. S. GRIGORIEV, The Stress State and the Carrying Capacity of Flexible Plates and Shells at Large Deformations, North-Holland Publ. Co., Amsterdam, PWN Warszawa 1964, repr. Non-Classical Shell Problems, Proc. IASS Symp., Warsaw, Sept. 1963.
T.H. HAZLETT, A. T. ROBINSON, J. E. DORN, An evaluation of a theory for plastic flow in anisotropic sheet metals, Trans. ASME, 42 (1950), 1326-1356.
R. HILL, A. Theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc., London, ser. A, 193 (1948), 281-297.
R. HILL, The Mathematical Theory of Plasticity, Clarendon Press, Oxford 1950.
O. HOFFMAN, G. SACHS, Introduction to the Theory of Plasticity for Engineers, McGraw-Hill Book Co., 1953.
L. W. Hu, Studies on plastic flow of anisotropic metals, Trans. ASME, 3, 23 (1956), 444-450.
L. W. Hu, Modified Tresca's Yield Condition and Associated Flow Rules for Anisotropic Materials and Applications, J. Franklin Inst., 3, 1958, 187.
L. R. JACKSON, K. F. SMITH, W.T. LANKFORD, Plastic flow in anisotropic sheet steel, Metals Technology, 5, 15 (1948), TP-2440.
[in Russian]
[in Russian]
[in Russian]
[in Russian]
R. MISES, Mechanik der plastischen Formänderung von Kristallen, Zeitschr. angew. Math. und Mech., 3, 8 (1928).
A. NÁDAI, Theory of Flow and Fracture of Solids, New York-Toronto-London 1950.
J. ORKISZ, Problem odciążenia obrotowo-symetrycznych powłok w stanie błonowym przy dużych odkształceniach niesprężystych, Mech. Teoret. i Stos., 1, 3 (1965).
[in Russian]
J. ORKISZ, Skończone odkształcenia obrotowo-symetrycznych powłok w stanie błonowym
przy pewnych typach fizycznej nieliniowości, Rozpr. Inżyn., 4, 13 (1965). Streszcz. ang.: Bull. Acad. Polon. Sci., Série. Sci. Techn., 1, 15 (1967).
J. ORKISZ, Skończone odkształcenia wiotkich osiowo-symetrycznych powłok w stanie błonowym w świetle teorii płynięcia plastycznego, Mech. Teoret. i Stos., 4, 5 (1967).
F. OTTO, R. TROSTEL, Zugbeanspruchte Konstruktionen, Ullstein Fachverlag Frankfurt-Berlin 1962.
C. R. STEEL Orthotropic pressure vessels with axial constraint. J. AIAA, 4, 1964, 703-709.
[in Russian]
A. TARCZEWSKI Konstrukcje pneumatyczne Bibl. Inż. i Bud., Warszawa 1965.
[in Russian]
[in Russian]