Stateczność Grubościennej Rury Obciążonej Ciśnieniem Zewnętrznym
The total strain is divided into two parts: finite initial and small additional part. The incompressibility conditions and the equilibrium equations constitute a set of four homogeneous linear differential equations with homogeneous boundary conditions. Further considerations are confined to the case of plane strain and the Mooney material. By separating the variables a single ordinary differential equation of the fourth order is obtained. The problem of stability loss is reduced to that of eigenyalues of a differential equation. As an illustration numerical computation is done for fixed values of the parameters α and λ. The deformation assumed corresponds to two different "critical thicknesses" of the tube.
References
A. E. GREEN, W. ZERNA, Theoretical Elasticity, Oxford 1954.
GUO-ZHONG-HENG, W. URBANOWSKI, Stability of non-conservative systems in the theory of elasticity of finite deformations, Arch. Mech. Stos., 2, 15 (1963).
E. W. WILKES, On the stability of a circular tube under end thrust, Quart. J. Mech. Appl. Math., 1, 8 (1955), 88-100.
A. E. GREEN, J. M. SPENCER, The stability of a circular cylinder under finite extension and torsion, J. Math. Phys., 4, 37 (1959), 316-338.
Z. WESOŁOWSKI, The axially symmetric problem of stability loss of an elastic. bar subject to tension, Arch. Mech. Stos., 3, 15 (1963).
Z. WESOŁOWSKI, Stability of the thick-walled spherical shell loaded by the hydrostatic pressure, Arch. Mech. Stos., 6, 18 (1966).
M. ŻYCZKOWSKI, Analiza stateczności promieniowo ściskanych powłok walcowych metoda uogólnionych szeregów potęgowych, Rozpr. Inzyn., 1, 14 (1966), 157-174.
K. GIRKMANN, Flüchentragwerke, 4 Aufl., Springer-Verlag, Wien 1956. Tłum. polskie: Dźwigary powierzchniowe, Arkady, Warszawa 1957.