Engineering Transactions, 62, 4, pp. 329–354, 2014
10.24423/engtrans.238.2014

Description of the Yield State of Bioplastics on Examples of Starch-Based Plastics and PLA/PBAT Blends

Teresa FRAS
French-German Research Institute of Saint-Louis (ISL)
France

Masahiro NISHIDA
Nagoya Institute of Technology, Department of Mechanical Engineering Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
Japan

Alexis RUSINEK
Laboratory of Mechanics, Biomechanics, Polymers and Structures (LaBPS), National Engineering School of Metz (ENIM), Route d’Ars Laquenexy, 57000 Metz, France
France

Ryszard Bolesław PĘCHERSKI
Institute of Fundamental Technological Research of the Polish Academy of Sciences, A. Pawińskiego 5B, 02-106 Warsaw, Poland
Poland

Norio FUKUDA
Aichi Center for Industry and Science Technology, 1267-1 Akiai, Yakusa-cho, Toyota-shi, Aichi, 470-0356, Japan
Japan

The present work concerns the description of the yield state of biodegradable materials. As examples, biodegradable polymers are chosen – cornpole CRP-M2, starch fatty acid ester, and PLA/PBAT, poly(lactic acid) (PLA) blended with poly(butylene adipate/terephthalate) (PBAT), [1-2]. These biodegradable, plant-derived bioplastics are a promising alternative to petroleum-based plastics. To describe the onset of plasticity in the bioplastics under discussion, Burzyński ´s hypothesis of material effort has been applied, [3-4]. The applied criteria account for the differential strength effect and for the shear correction resulting from the difference between experimental and theoretical values obtained as a result of the Huber-Mises approach, [5-6]. In general, these properties of yield state are characteristic for polymers. The description of yield state for bioplastics is an issue that has hardly been investigated, where illustrates the novel nature of this paper in which this topic is discussed.
Keywords: bioplastics, strength differential effect, shear correction, yield surface, Burzyński yield condition.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

http://www.epa.gov/

http://www.nihon-cornstarch.com/product/bio_plastic/tabid/160/Default.aspx#1

Burzyński W.T., Studjum nad hipotezami wytezenia, Akademja Nauk Technicznych, Lwów 1928; also Dzieła Wybrane, Polska Akademia Nauk, PWN Warszawa 1982; also Selected passages from Włodzimierz Burzyński’s doctoral dissertation: Study on material effort hypotheses,. Engng Trans., 57, 1, 185–215, 2009.

Burzyński W.T., Teoretyczne podstawy hipotez wytezenia, Czasopismo Techniczne 47, 1-4, 1929; English translation: Theoretical foundations of the hypotheses of material effort, Engng Trans., 56, 1, 269–305, 2008.

Huber M.T., O podstawach teorji wytrzymałosci, volume XV, Prace Mat.-Fiz. Warszawa, 1904.

von Mises R., Mechanik der festen Körper im plastisch-deformablen Zustand, volume 1, Göttin. Nachr. Math. Phys. 1913.

Bahlouli N., Pessey D., Raveyre C., Guillet J., Ahzi S., Dahoun A. and Hiver J. M., Recycling effects on the rheological and thermomechanical properties of polypropylene-based composites, Mater. Des., 33, 1, 451–8, 2012

Nishida M., Ichihara H. and Fukada N., Evaluation of dynamic compressive properties of PLA/PBAT polymer alloys using split Hopkinson pressure bar method, Engng Trans., 59, 1, 21–30, 2011.

Nishida M., Ichihara H., Watanabe H., Fukuda N. and Ito H., Effect of Dialkyl Peroxide blending on tensile properties of PLA/PBAT polymer alloys, Engng Trans., 60, 2, 171–84, 2012.

Otey F. H. and Westhoff R.P., Biodegradable film compositions prepared from starch and copolymers of ethylene and acrylic acid, U.S. Patent, 4,133,784, 1979.

Narayan R., Drivers for biodegradable/compostable plastics and role of composting in waste management and sustainable agriculture, Bioprocessing of Solid Waste and Sludge, 11, 1, 2001.

Avella M., Errico M. E., Rimedio R. and Sadocco P., Preparation of biodegradable polyesters/high-amylose-starch composites by reactive blending and their characterization, J. Appl. Polym. Sci., 83, 1432-42, 2002.

Averous L., Biodegradable multiphase systems based on plasticized starch, J. Macromol. Sci., 44, 3, 231-74, 2004.

Gaspar M., Benkő Z., Dogossy G., Reczey K. and Czigany T., Reducing water absorption in compostable starch-based plastics. Polym. Degrad. Stab., 90, 3, 563-9, 2005.

Malhotra S. V., Kumar V., East A. and Jaffe M., Applications of corn-based chemistry. Bridge Washington National Academy of Engineering, 37, 4-17, 2007.

Nishida M., Ito N., Kawase H. and Tanaka K., Effects of Temperature on Dynamic Properties of a Biodegradable Polymer Made from Corn Starch, J. Solid Mech. Mater. Eng., 3, 2, 287-294, 2009.

Nampoothiri K. M., Nair N. R. and John R. P., An overview of the recent developments in polylactid (PLA) research, Bioresource Technol., 101, 8493–501, 2010.

Anders S. and Mikael S., Properties of lactic acid based polymers and their correlation with composition, Prog. Polym. Sci., 27, 1123–63, 2002.

Van de Velde K. and Kiekens P., Biopolymers: overview of several properties and consequences on their applications, Polym. Test., 21, 433–44, 2002.

Carrasco F., Pages P., Gamez-Perez J., Santana O. and M. Maspoch, Processing of poly (lactic acid): Characterization of chemical structure, thermal stability and mechanical properties, Polym. Degrad. Stab., 95, 2, 116–25, 2010.

Weng Y. X., Jin Y. J., Meng Q. Y., Wang L., Zhang M. and Wang Y. Z, Biodegradation behaviour of poly (butylene adipate-co-terephthalate)(PBAT), poly (lactic acid)(PLA), and their blend under soil conditions, Polym. Test., 32, 5, 918-26, 2013.

Yamura T., Omiya M., Sakai T. and Viot P., Evaluation of compressive properties of PLA/PBAT polymer blends. Asian Pacific Conference for Materials and Mechanics, 2009.

Liu H. and Jinwen Z., Research progress in toughening modification of poly (lactic acid), J. Polym. Sci., Part B: Polym. Phys., 49, 15, 1051-83, 2011.

Yeh J., Tsou C., Huang C., Chen K., Wu C. and Chai W., Compatible and crystallization properties of poly(lacticacid)/poly(butylene adipate-co-terephthalate) blends, J. Appl. Polym. Sci., 116, 680–87, 2010.

Li K., Peng J., Turng L. and Huan H., Dynamic rheological behaviour and morphology of polylactide/poly(butylenes adipate-co-terephthalate) blends with various composition ratios, Adv. Polym. Tech., 30, 2, 150–7, 2011.

Kanzawa T. and Tokumitsu K., Mechanical properties and morphological changes of poly(lactic acid)/polycarbonate/poly(-butylene adipate-coterephthalate) blend through reactive processing, J. Appl. Polym. Sci., 121, 2908–18, 2011.

Sharper W., Experimental Solid Mechanics, Springer-Verlag, 2008.

Spitzig W. A. and Richmond O., Effect of hydrostatic pressure on the deformation behaviour of polyethylene and polycarbonate in tension and in compression, Polym. Eng. Sci., 19, 16, 1129–39, 1979.

Mulliken A. D. and Boyce M. C., Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates, Int. J. Sol. Struct., 43, 5, 1331–56, 2006.

Siviour C. R., Walley S. M., Proud W. G. and Field J. E., The high strain rate compressive behaviour of polycarbonate and polyvinylidene difluoride, Polym., 46, 26, 12546–55, 2005.

Richeton J., Ahzi S., Vecchio K. S., Jiang F. C. and Adharapurapu R. R., Influence of temperature and strain rate on the mechanical behaviour of three amorphous polymers: Characterization and modeling of the compressive yield stress, Int. J. Sol. Struct., 43, 7, 2318–35, 2006.

Sarva S. and Boyce M., Mechanics of polycarbonate during high-rate tension, J. Mech. Mat. Struct. 2, 10, 1853-80, 2007.

Hu L. W. and Pae K. D., Inclusion of the hydrostatic stress component in formulation of the yield condition, J. of the Franklin Institute, 275, 6, 491–502, 1963.

Raghava R. S., Caddell R. M and Atkins A. G., Pressure dependent yield criteria for polymers, Mater. Sci. Eng., A, 13, 2, 113–20, 1974.

Ghorbel E., A viscoplastic constitutive model for polymeric materials, Int. J. Plast., 24, 11, 2032–58, 2008.

Fras T., Modelling of plastic yield surface of materials accounting for initial anisotropy and strength differential effect on the basis of experiments and numerical simulation. Phd Thesis: University of Lorraine; 2013.

Tresca H., Mémoire sur l’écoulement des corps solides soumis a de fortes pressions. C.R. Acad. Sci. Paris, 24, 1864.

Bowden P. B. and Jukes J. A., The plastic yield behaviour of polymethylmethacrylate, J. Mater. Sci., 3, 2, 183-90, 1968.

Silano A. A., Pae K. D. and Sauer J. A., Effects of hydrostatic pressure on shear deformation of polymers, J. Appl. Phys., 48, 10, 4076-84, 1977.

Raniecki B. and Mróz Z., Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting SD effect. Acta Mech., 195, 1-4, 1–22, 2008.

Khan A. S. and Farrokh B., A strain rate dependent yield criterion for isotropic polymers: low to high rates of loading, Eur. J Mech. A/Sol., 29, 2, 274–82, 2010.

Nalepka K., Pęcherski R.B., Fras T., Nowak M., Inelastic flow and failure of metallic solids. Material effort: study across scales, in: T. Łodygowski, A. Rusinek (eds.), CISM, 552, Udine, 245-85, 2014.

Campbell J. D. and Ferguson W. G., Temperature and strain-rate dependence of the shear strength or mild steel, Philos. Mag., 21, 169, 63–75, 1970.

Klepaczko J. R., An experimental technique for shear testing at high and very high strain rates. The case of mild steel, Int. J. Impact Eng., 15, 1, 25–39, 1994.

Rusinek A. and Klepaczko J. R., Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain rate and temperature dependence of the flow stress, Int. J. Plast., 17, 1, 87–115, 2001.

Fras T. and Pęcherski R. B., Applications of Burzyński hypothesis of materials effort for isotropic solids, Mechanics and Control, 25, 2, 45-50, 2010.

Fras T., Kowalewski Z., Pęcherski R.B. and Rusinek A., Applications of Burzyński failure criterion. Part I. Isotropic materials with asymmetry of elastic range, Engng Trans., 58, 1-2, 3-13, 2010.

Vadillo G., Fernandez-Saez J. and Pęcherski R.B., Some applications of Burzyński yield condition in metal plasticity, Mater. Des., 32, 628–35, 2011.

Boumbimba R. M., Wang K., Bahlouli N., Ahzi S., Rémond Y. and Addiego F., Experimental investigation and micromechanical modeling of high strain rate compressive yield stress of a melt mixing polypropylene organoclay nanocomposites, Mech. Mater., 52, 1, 58–68, 2012.

Bridgman P. W., Studies in Large Plastic Flow and Fracture With Special Emphasis on the Effects of Hydrostatic Pressure, McGraw-Hill, New York, 1952.

Drucker D.C. and Prager W., Soil mechanics and plastic analysis of limit design. Quart. J. Appl. Math., 10, 157–65, 1952.

Rauch E. F., Plastic anisotropy of sheet metals determined by simple shear tests, Mater. Sci. Eng., A, 241, 1, 179–83, 1998.

Pęcherski R.B., Szeptyński P. and Nowak M., An extension of Burzyński hypothesis of material effort accounting for the third invariant of shear tensor, Arch. Metall. Mat., 56, 2, 503-8, 2011.

Nowak M., Ostrowska-Maciejewska J., Pęcherski R.B. and Szeptyński P., Yield criterion accounting for the third invariant of stress tensor deviator. Part I. Proposition of the yield criterion based on the concept of influence functions, Engng Trans., 59, 4, 273-81, 2011.

Koiter W. T., Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface, Quart. Appl. Math., 11, 3, 350-4, 1953.

Nayak G. C. and Zienkiewicz O. C., Elasto‐plastic stress analysis. A generalization for various constitutive relations including strain softening, Int. J. Numer. Methods Eng., 5, 1, 113-35, 1972.

M. Nowak. New formulation of Burzyński criterion, Internal report PPS IPPT PAN, 2012.

Fras T., Rusinek A., Pęcherski R.B., Bernier R. and Jankowiak T., Analysis of friction influence on material deformation under biaxial compression state, Tribol. Int., 80, 14–24, 2014.

Dangbo A., Caractérisation thermomécanique d’un polymère à base d’amidon de maïs en double cisaillement, Rapport de Master, ENIM, 2012.




DOI: 10.24423/engtrans.238.2014