Engineering Transactions, 43, 1-2, pp. 45-70, 1995

An Interactive Program for Shape Optimization of Sections Under Saint-Venant Torsion Using Boundary Element Method

P. Berkowski
Wrocław University of Technology, Institute Of Building Engineering, Wrocław
Poland

J.M. Sieczkowski
Wrocław University of Technology, Institute Of Building Engineering, Wrocław
Poland

M. Doblaré
Departmento De Ingeniería Civil C.P.S. De La Universidad De Zaragoza
Spain

L. Garcia
Departmento De Ingeniería Civil C.P.S. De La Universidad De Zaragoza
Spain

An interactive program for visualization of results generated during the shape optimization of simply and multiply-connected isotropic sections under the Saint-Venant torsion using B.E.M. is presented in this paper. The program includes some graphical tools essential for preprocessing, analysis and postprocessing parts of the optimization system and makes it possible to carry out boundary mesh modifications caused by changes in its geometry and initial mesh, and also by the intersecting boundaries. In order to show the influence of the geometric irregularities and intersections of the boundaries on the optimization process as well as the advantages of the program proposed, some examples of the shape optimization are presented.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

J. SOKOŁOWSKI and J.-P. ZOLESIO, Introduction to shape optimization, Springer­Verlag, 1991.

K. DEMS, Multiparameter shape optimization of elastic bars in torsion, Int. J. Num. Meth. in Engng., 13, pp. 247-263, 1978.

N. KJKUCHI and J.E. TAYLOR, Shape optimization of elastic bars in torsion, Proc. of the Euromechanics Colloquium, Siegen, pp. 216-223, 1982.

L.M. KURSHIN and P.N. ONOPRIENKO, Determination of the shapes of doubly connected bar sections of maximum torsional stiffness, PMM, 40, pp. 1020-1026, 1976.

J.W. HOU and J.S. SHEEN, Computational shape optimization: Recent advances and applications, Computer Aided Optimum Design of Structures, Recent Advances, C.A. BREBBIA and S. HERNANDEZ [Eds.], Springer-Verlag, pp.125-134, 1989.

C.A. MOTA, L.M. OLIVEIRA and H.C. RODRIGUES, Optimization of the shape of solid and hollow shafts using boundary elements, Proc. 5th Conf. on B.E.M., pp. 883-889, C.A. BREBBIA, T. FUTAGAMI and M. TANAKA [Eds.], Hiroshima 1983.

C.A. MOTA and K.K. CHOI, Boundary elements in shape optimal design of structures, Computer Aided Optimal Design, C.A. MOTA [Ed.], Vol. 2, pp.145-185, Tróia, Portugal 1986.

T. BURCZYŃSKI and T. ADAMCZYK, The boundary element method for shape design synthesis of elastic structures, Proc. 7th Int. Conf. on B.E.M., C.A. BREBBIA and G. MAIER [Eds.], vol.12, pp. 93-106, Springer-Verlag, 1985.

T. BURCZYŃSKI and T. ADAMCZYK, The boundary element formulation for multiparameter strutures shape optimization, Appl. Mathem. Modelling, 9, pp. 195-200, 1985.

L. GRACIA, Optimización de formas en elasticidad bidimensional mediante el método de los elementos de contorno, PhD Thesis, University of Zaragoza, Spain 1988.

L. GRACIA and M. DOBLARÉ, Shape optimization of elastic orthotropic shafts under torsion by using boundary elements, Comp. & Struct., 30, 6, pp.1281-1291, 1988.

L. GRACIA and M. DOBLARÉ, Shape optimization by using B.E.M., Proc. 10th Conf. B.E.M., C.A. BREBBIA [Ed.], Springer-Verlag, vol. 3, pp.491-514, 1988.

F. ESPIGA, L. GRACIA and M. DOBLARÉ, Shape optimization of elastic homogenous 2D bodies by the boundary element method, Comp. & Struct., 33, 5, pp.1233-1241, 1989.

V.V. KOBELEV, Numerical method for shape optimization using BEM, Comp. & Struct., 33, 5, pp.1223-1227, 1989.

Z. ZHAO and R.A. ADEY, Shape optimization using the boundary element method, Computer Aided Optimum Design of Structures, Recent Advances, C.A. BREBBIA and S. HERNANDEZ [Eds.], Springer-Verlag, pp.145-163, 1989.

Z. ZHAO and R.A. ADEY, A numerical study on the elements of shape optimum design, Engng. Anal. with Boundary Elem., No 91 pp. 339-349, 1992.

E. ATREK, SHAPE: A Program for shape optimization of continuum structures, Computer Aided Optimum Design of Structures, Applications, C.A. BREBBIA and S. HERNANDEZ [Eds.], Springer-Verlag, pp.135-141, 1989.

S. KIBSGAARD, N. OLHOFF and J. RASMUSSEN, Concept of an optimization system, Computer Aided Optimum Design of Structures, Applications, C.A. BREBBIA and S. ERNANDEZ [Eds.], Springer-Verlag, pp. 79-88, 1989.

J.L.T. SANTOS, M.M. GODSE, K.H. CHUANG and T.A. STONE, An iteractive system for structural design sensivity analysis and optimization, Computer Aided Optimum Design of Structures, Applications, C.A. BREBBIA and S. HERNANDEZ [Eds.], Springer-Verlag, pp. 3-12, 1989.

A. ARIAS, J. CANALES and J.A. TARRAGO, A parametric model of structures representation and its integration in a shape optimal design procedure, Proc. 14th Int. Conf. on B.E.M., Springer-Verlag, C.A. BREBBIA, J. DOMINGUEZ and F. PARIS [Eds.], Structural Systems and Industrial Applications, pp. 401-412, 1985.

P. BERKOWSKI, L. GRACIA and M. DOBLARÉ, Un programa interactivo para el diseño óptimo de formas medianie el método de los elementos de contorno, II Congreso de Métodos Numéricos en Ingeniería, F. NAVARRINA and M. CASTELEIRO [Eds.], vol.2, pp.1708-1722, La Coruña 1993.