Engineering Transactions, 69, 1, pp. 3–17, 2021

Numerical Comparison of Two Runners for Gravitational Vortex Turbine

Instituto Tecnológico Metropolitano

Instituto Tecnológico Metropolitano

Institución Universitaria Pascual Bravo Medellín

Institución Universitaria Pascual Bravo Medellín

The main purpose of this study is to compare numerically the torque generated by two runners for a gravitational vortex turbine. One of the runners was an H-Darrieus turbine with the rotational flow into the chamber that helped to decrease its negative torque. The other runner was a standard (straight blade) turbine, which determined the performance in both cases. The study was conducted in ANSYSrCFX, where the model was configured at constant operating conditions in both cases. The standard runner performance was higher (75%) than that of the H-Darrieus runner. The highest torque for the standard and the H-Darrieus runners was 0.76 and 0.16 N·m, respectively. The standard runner had a larger fluid contact area than the H-Darrieus runner, which extracted more energy.
Keywords: vortex; runner; H-Darrieus; geometry; performance
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).


IRENA – International Renewable Energy Agency, Renewable capacity highlights, No. March, p. 2, 2018.

International Renewable Energy Agency, Renewable capacity highlights, 2018.

Millán J., Water and energy [in Spanish: Agua y Energía], Caracas, Venezuela, Aug. 2015.

Dyner I., Alvarez C., Cherni J., Energy contribution to sustainable rural livelihoods in developing countries: a system dynamics approach, [In:] Proceedings of 23rd International Conference of the System Dynamics Society, July 17–21, 2005, Boston, USA, 2005.

Perius M.R., Carregaro J.B., Small hydroelectric plants as a way of reducing environmental impacts and energy crises, Essays and Science Biological, Agricultural and Health Sciences [in Portuguese: Pequenas centrais hidrelétricas como forma de redução de impactos ambientais e crises energéticas, Ensaios e Ciência Ciências Biológicas, Agrárias e da Saúde], 16(2): 135–150, 2012, doi: 10.17921/1415-6938.2012v16n2p%25p.

Alzamora Guzmán V.J., Glasscock J.A., Whitehouse F., Design and construction of an off-grid gravitational vortex hydropower plant: A case study in rural Peru, Sustainable Energy Technologies and Assessments, 35: 131–138, 2019, doi: 10.1016/j.seta.2019.06.004.

Li H-F., Chen H-X., Ma Z., Zhou Y., Formation and influencing factors of free surface vortex in a barrel with a central orifice at bottom, Journal of Hydrodynamics, 21(2): 238–244, 2009, doi: 10.1016/S1001-6058(08)60141-9.

Timilsina A.B., Mulligan S., Bajracharya T.R., Water vortex hydropower technology: a state-of-the-art review of developmental trends, Clean Technologies and Environmental Policy, 20(8): 1737–1760, 2018, doi: 10.1007/s10098-018-1589-0.

Shabara H.M., Yaakob O.B., Ahmed Y.M., Elbatran A. H., Faddir M.S.M., CFD validation for efficient gravitational vortex pool system, Jurnal Teknologi., 74(5): 97–100, 2015, doi: 10.11113/jt.v74.4648.

Mulligan S., Casserly J., Sherlock R., Experimental and numerical modelling of free-surface turbulent flows in full air-core water vortices, [In:] Gourbesville P., Cunge J., Caignaert G. (Eds) Advances in Hydroinformatic, pp. 549–569, Springer Singapore, Singapore, 2014, doi: 10.1007/978-981-287-615-7_37.

Wanchat S., Suntivarakorn R., Preliminary design of a vortex pool for electrical generation, Advanced Science Letters, 13(1): 173–177, 2012, doi: 10.1166/asl.2012.3855.

S. Dhakal et al., Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant, Renewable and Sustainable Energy Reviews, 48: 662–669, 2015, doi: 10.1016/j.rser.2015.04.030.

Ruiz Sánchez A., Sierradel Rio J.A., Guevara Muñoz A. J., PosadaMontoya J. A., Numerical and experimental evaluation of concave and convex designs for gravitational water vortex turbine, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 64(1): 160–172, 2019.

Dhakal S., Timilsina A.B., Dhakal R., Fuyal D., Bajracharya T. R., Pandit H.P., Effect of dominant parameters for conical basin: gravitational water vortex power plant, [In:] International Conference on Technolog and Innovation Management & IOE, vol. 1, pp. 380–386, 2014.

Sreerag S.R., Raveendran C.K., Jinshah B.S., Effect of outlet diameter on the performance of gravitational vortex turbine with conical basin, International Journal of Scientific & Engineering Research, 7(4): 457–463, 2016.

Rehman W., Ijaz M., Munir A., Designing of micro gravitational vortex turbine’s vortex pool, Proceedings of the ASME 2017 Power Conference, Vol. 2, Charlotte, North Carolina, USA, June 26–30, 2017, doi: 10.1115/POWER-ICOPE2017-3186.

Wanchat S., Suntivarakorn R., Wanchat S., Tonmit K., Kayanyiem P., A parametric study of gravitational vortex power plant, Advanced Materials Research., 805–806: 811–817, 2013, doi: 10.4028/

Dhakal S., Nakarmi S., Pun P., Thapa A.B., Bajracharya T.R., Development and testing of runner and conical basin for gravitational water vortex power plant, Journal of the Institute of Engineering, 10(1): 140–148, 2014, doi: 10.3126/jie.v10i1.10895.

Wichian P., Suntivarakorn R., The effects of turbine baffle plates on the efficiency of water free vortex turbines, [In:] 3rd International Conference on Power and Energy System Engineering, 2016, pp. 8–12.

Dhakal R. et al., Computational and exerimental investigation of runner for gravitational water vortex power plant, 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, 2017, Vol. 5, pp. 365–373, 2017, doi: 10.1109/ICRERA.2017.8191087.

Saleem A.S. et al., Parametric study of single-stage gravitational water vortex turbine with cylindrical basin, Energy, 200: 117464, 2020, doi:10.1016/

Ullah R., Cheema T.A., Saleem A.S., Ahmad S. M., Chattha J.A., Park C.W., Performance analysis of multi-stage gravitational water vortex turbine, Energy Conversion and Management, 198: 111788, 2019, doi: 10.1016/j.enconman.2019.111788.

Ullah R., Cheema T.A., Saleem A.S., Ahmad S. M., Chattha J.A., Park C.W., Preliminary experimental study on multi-stage gravitational water vortex turbine in a conical basin, Renewable Energy, 145: 2516–2529, 2020, doi: 10.1016/j.renene.2019.07.128.

Patel V., Eldho T.I., Prabhu S.V., Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower, Renewable Energy, 135: 1144–1156, 2019, doi: 10.1016/j.renene.2018.12.074.

Einstein H.A., Li H. Li, Steady vortex flow in a real fluid., Proceding of Heat Transfer and Fluid Mechanics Institute, Stanford University, pp. 33–43, 1951.

Vatistas G.H., Lin S., Kwok C.K., Theoretical and experimental studies on vortex chamber flows, AIAA Journal, 24(4): 635–642, 1986, doi: 10.2514/3.9319.

Rosenhead L., The spread of vorticity in the wake behind a cylinder, Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, 127(806): 590–612, 1930, doi: 10.1098/rspa.1930.0078.

Hite Jr, J.E., Mih W.C., Velocity of air-core vortices at hydraulic intakes, Journal of Hydraulic Engineering, 120(3): 284–297, 1994.

Odgaard A.J., Free-surface air core vortex, Journal of Hydraulic Engineering, 112(7): 610–620, 1986, doi: 10.1061/(ASCE)0733-9429(1986)112:7(610).

Rankine W.J.M., A Manual of Applied Mechanics, London: Charles Griffin and Co., 1858.

Burgers J.M., A mathematical model illustrating the theory of turbulence, Advances in Applied Mechanics, 1(C): 171–199, 1948, doi: 10.1016/S0065-2156(08)70100-5.

Rahman M., Hong T.J., Tang R., Sung L.L., Tamiri F.B.M., Experimental study the effects of water pressure and turbine blade lengths & numbers on the model free vortex power generation system, International Journal of Current Trends in Engineering & Research (IJCTER), 2(9): 13–17, 2016.

Marian M.G., Sajin T., Azzouz A., Study of micro hydropower plant operating in gravitational vortex flow mode, Applied Mechanics and Materials, 371: 601–605, 2013, doi: 10.4028/

Ansys Inc., User Manual Ansys ICEM CFD 12.1, vol. 0844682, no. November, pp. 724–746, 2009.

Ceballos Castañeda Y.C., Valencia C. M., Zuluaga H. D., Del Rio J., Garcia V. S., Influence of the number of blades in the power generated by a Michell Banki Turbine, International Journal of Renewable Energy Research-IJRER, 7(4): 1989–1997, 2017.

Roache P.J., Ghia K.N., White F.M., Editorial policy statement on the control of numerical accuracy, Journal of Fluids Engineering, 108(1): 2, 1986, doi: 10.1115/1.3242537.

ANSYS, Courant number, [In:] ANSYS Help, 2019.

Beltran-Urango D., Herrera-Díaz J.L., Posada-Montoya J.A., Castañeda L., Sierra-del Rio J.A., Generation of Electric Power Through Gravitational Vortices [in Spanish: Generación de Energía Eléctrica Mediante Vórtices Gravitacionales], Memorias EXPO Tecnologias 2016, Medellin, Antioquia, pp. 90–107, 2016.

DOI: 10.24423/EngTrans.1165.20210126