10.24423/EngTrans.1129.20200214
Bending of Beams with Consideration of a Seventh-Order Shear Deformation Theory
References
Gere J.M., Timoshenko S.P., Mechanics of materials, 2nd Ed., PWS-KENT Publishing Company, Boston 1984.
Rychter Z., A family of shear-deformation beam theories and a refined Bernoulli-Euler theory, International Journal of Engineering Sciences, 31(4): 559–567, 1993, doi: 10.1016/0020-7225(93)90049-Z.
Wang C.M., Reddy J.N., Lee K.H., Shear deformable beams and plates: Relationships with classical solutions, Elsevier, Amsterdam, Lausanne, New York, Shannon, Singapore, Tokyo, 2000.
Hutchinson J.R., Shear coefficients for Timoshenko beam theory, ASME, Journal of Applied Mechanics, 68 (1): 87–92, 2001, doi: 10.1115/1.1349417.
Reddy J.N., Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates, International Journal of Engineering Science, 48(11): 1507–1518, 2010, doi: 10.1016/j.ijengsci.2010.09.020.
Shi G., Voyiadjis G.Z., A sixth-order theory of shear deformable beams with variational consistent boundary conditions, ASME, Journal of Applied Mechanics, 78(2): 021019, 2011, doi: 10.1115/1.4002594.
Beck A.T., da Silva Jr. C.R.A., Timoshenko versus Euler beam theory: Pitfalls of a deterministic approach, Structural Safety, 33(1): 19–25, 2011, doi: 10.1016/j.strusafe.2010.04.006.
Kim N-I., Shear deformable doubly- and mono-symmetric composite I-beams, International Journal of Mechanical Sciences, 53(1): 31–41, 2011, doi: 10.1016/j.ijmecsci.2010.10.004.
Magnucka-Blandzi E., Dynamic stability and static stress state of a sandwich beam with a metal foam core using three modified Timoshenko hypothesis, Mechanics of Advanced Materials and Structures, 18(2): 147–158, 2011, doi: 10.1080/15376494.2010.496065.
Magnucka-Blandzi E., Magnucki K., Wittenbeck L., Mathematical modelling of shearing effect for sandwich beams with sinusoidal corrugated cores, Applied Mathematical Modelling, 39(9): 2796–2808, 2015, doi: 10.1016/j.apm.2014.10.069.
Schneider P., Kienzler R., On exact rod/beam/shaft-theories and the coupling among them due to arbitrary material anisotropies, International Journal of Solids and Structures, 56–57: 265–279, 2015, doi: 10.1016/j.ijsolstr.2014.10.022.
Senjanović I., Vladimir N., Neven H., Tomić M., New first order shear deformation beam theory with in-plane shear influence, Engineering Structures, 110: 169–183, 2016, 10.1016/j.engstruct.2015.11.032.
Endo M., ‘One-half order shear deformation theory’ as a new naming for the transverse, but not in-plane rotational, shear deformable structural models, International Journal of Mechanical Sciences, 122: 384–391, 2017, doi: 10.1016/j.ijmecsci.2016.10.016.
Kienzler R., Schneider P., Second-order linear plate theories: Partial differential equations, stress resultants and displacements, International Journal of Solids and Structures, 115–116: 14–26, 2017, doi: 10.1016/j.ijsolstr.2017.01.004.
Adámek V., The limits of Timoshenko beam theory applied to impact problems of layered beams, International Journal of Mechanical Sciences, 145: 128–137, 2018, doi: 10.1016/j.ijmecsci.2018.07.001.
Magnucki K., Witkowski D., LewiŃski J., Bending and free vibrations of porous beams with symmetrically varying mechanical properties – Shear effect, Mechanics of Advanced Materials and Structures,27(4): 325–332, 2020, doi: 10.1080/15376494.2018.1472350.
Magnucki K, Lewiński J., Analytical modeling of I-beam as a sandwich structure, Engineering Transactions, 66(4): 357–373, 2018, doi: 10.24423/EngTrans.898.20180809.
Magnucki K., Bending of symmetrically sandwich beams and I-beams – Analytical study, International Journal of Mechanical Sciences, 150: 411–419, 2019, doi: 10.1016/j.ijmecsci.2018.10.020.
Magnucki K., Lewinski J., Cichy R., Bending of beams with bisymmetrical cross sections under non-uniformly distributed load – Analytical and numerical-FEM studies, Archive of Applied Mechanics, 89(10): 2103–2114, 2019, doi: 10.1007/s00419-019-01566-5.
DOI: 10.24423/EngTrans.1129.20200214