Engineering Transactions, 68, 1, pp. 89–101, 2020

Investigations on Tensile and Flexural Characteristics of Fly Ash and Banana Fiber-Reinforced Epoxy Matrix Composites

Venkatachalam GOPALAN
Vellore Institute of Technology

Shashank Kumar SHARMA
Vellore Institute of Technology

Anil Kumar JANGID
Vellore Institute of Technology

Vellore Institute of Technology

Vellore Institute of Technology

Vellore Institute of Technology

Polymer matrix composites (PMCs) generally use the inorganic and non-biodegradable materials as reinforcements. This paper presents a PMC with reinforcement of fly ash and banana fiber. The epoxy resin is used as a matrix. This paper investigates the influences of the percentage of fly ash, the percentage of banana fiber and the size of banana fiber on tensile and flexural behaviors of fly ash and banana fiber reinforced epoxy matrix composite. Taguchi’s orthogonal array is used in the design of the experiments in the sample preparations. Analysis of variance (ANOVA) is employed to find the significance of input parameters on tensile and flexural behaviors.
Keywords: polymer matrix composites; reinforcement; natural fiber; mechanical behavior
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).


Cheung H.-Y., Ho M.-P., Lau K.-T., Cardona F., Hui D., Natural fibre-reinforced composites for bioengineering and environmental engineering applications, Composites Part B: Engineering, 40(7): 655–663, 2009, doi: 10.1016/j.compositesb.2009.04.014.

Chandramohan D., Marimuthu K., Tensile and hardness tests on natural fibre reinforced polymer composite material, International Journal of Advanced Engineering Science and Technology, 6: 97–104, 2011.

Maleque M.A.,, Belal F.Y., Sapuan S.M., Mechanical properties study of pseudo-stem banana fibre reinforced epoxy composite, The Arabian Journal for Science and Engineering, 32(2B): 359–364, 2007,

Rao K.M.M., Rao K.M., Prasad A.V.R., Fabrication and testing of natural fibre composites: vakka, sisal, bamboo and banana, Materials and Design, 31(1): 508–513, 2010, doi: 10.1016/j.matdes.2009.06.023.

Venkateshwaran N., Elayaperumal A., Banana fibre reinforced polymer composites-a review, Journal of Reinforced Polymer & Composites, 29: 2387–2396, 2010, doi: 10.1177/0731684409360578.

Minelli M. et al., Investigation of mass transport properties of microfibrillated cellulose (MFC) films, Journal of Membrane Science, 358(1–2): 67–75, 2010, doi: 10.1016/j.memsci.2010.04.030.

Placet V., Characterization of the thermo-mechanical behaviour of Hemp fibers intended for the manufacturing of high-performance composites, Composites Part A: Applied Science and Manufacturing, 40(8): 1111–1118, 2009, doi: 10.1016/j.compositesa.2009.04.031.

Houshyar S., Shanks R.A., Mechanical and thermal properties of toughened polypropylene composites, Journal of Applied Polymer Science, 105(2): 390–397, 2007, doi: 10.1002/app.25034.

Sapuan S.M., Leenie A., Harimi M., Beng Y.K., Mechanical properties of woven banana fibre reinforced epoxy composites, Materials and Design, 27(8): 689–693, 2006, doi: 10.1016/j.matdes.2004.12.016.

Liu H., Wu Q., Zhang Q., Preparation and properties of banana fiber-reinforced composites based on high-density polyethylene (HDPE)/Nylon-6 blends, Bioresource and Technology, 100(23): 6088–6097, 2009, doi: 10.1016/j.biortech.2009.05.076.

Sepe R., Bollino F., Boccarusso L., Caputo F., Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites, Composites Part B: Engineering, 133: 210–217, 2018, doi: 10.1016/j.compositesb.2017.09.030.

Sathishkumar T.P., Navaneethakrishnan P., Shankar S., Tensile and flexural properties of snake grass natural fiber reinforced isophthallic polyester composites, Composites Science and Technology, 72(10): 1183–1190, 2012.

Ramesh M., Palanikumar K., Hemachandra Reddy K., Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites, Composites Part B: Engineering, 48: 1–9, 2013, doi: 10.1016/j.compositesb.2012.12.004.

Sanjay M.R., Arpitha G.R., Laxmana Naik L., Gopalakrishna K., Yogesh B., Studies on mechanical properties of banana/e-glass fabrics reinforced polyester hybrid composites, Journal of Material and Environmental Science, 7(9): 3179–3192, 2016,

Alaaeddin M.H., Sapuan S.M., Zuhri M.Y.M., Zainudin E.S., Faris M. AL-Oqla, Physical and mechanical properties of polyvinylidene fluoride-short sugar palm fiber nanocomposites, Journal of Cleaner Production, 235: 473–482, 2019, doi: 10.1016/j.jclepro.2019.06.341.

Montazeri A., Javadpour J., Khavandi A., Tcharkhtchi A., Mohajeri A., Mechanical properties of multi-walled carbon nanotube/epoxy composites, Materials & Design, 31(9): 4202–4208, 2010, doi: 10.1016/j.matdes.2010.04.018.

Montazeri A., Montazeri N., Viscoelastic and mechanical properties of multi walled carbon nanotube/epoxy composites with different nanotube content, Materials & Design, 32(4): 2301–2307, 2011, doi: 10.1016/j.matdes.2010.04.018.

Orooji Y., Ghasali E., Emami N., Noorisafa F., Razmjou A., ANOVA design for the optimization of TiO2 coating on polyether sulfone membranes, Molecules, 24(16): 2924–2937, 2019, doi: 10.3390/molecules24162924.

Mooi E., Sarstedt M., Mooi-Reci I., Hypothesis Testing & ANOVA, [in:] Market Research. Springer Texts in Business and Economics, pp. 153–214, Springer, Singapore, 2018, doi: 10.1007/978-981-10-5218-7_6.

Karippal J.J., Narasimha Murthy H.N., Rai K.S., Sreejith M., Krishna M., Study of mechanical properties of epoxy/glass/nanoclay hybrid composites, Journal of Composite Materials, 45(18): 1893–1899, 2011, doi: 10.1177/0021998310389087.

Fard M.Y., Raji B., Chattopadhyay A., The ratio of flexural strength to uniaxial tensile strength in bulk epoxy resin polymeric materials, Polymer Testing, 40: 156–162, 2014, doi: 10.1016/j.polymertesting.2014.09.002.

DOI: 10.24423/EngTrans.1086.20200219