10.24423/EngTrans.1063.20200102
Three-Dimensional Analysis of Laminated Plates with Functionally Graded Layers by Two-Dimensional Numerical Model
References
Byfut A., Schröder A., Unsymmetric multi-level hanging nodes and anisotropic polynomial degrees in h1-conforming higher-order finite element methods, Computers & Mathematics with Applications, 73(9): 2092–2150, 2017, doi: /10.1016/j.camwa.2017.02.029.
Carrera E., c0 Reissner-Mindlin multilayered plate elements including zig-zag and interlaminar stress continuity, International Journal for Numerical Methods in Engineering, 39(11): 1797–1820, 1996, doi: 10.1002/(SICI)1097-0207(19960615)39:11<1797::AIDNME928>3.0.CO;2-W.
Carrera E., Historical review of Zig-Zag theories for multilayered plates and shells, ASME Applied Mechanics Reviews, 56(3): 287–308, 2003, doi: 10.1115/1.1557614.
Carrera E., Cinefra M., Li G., Refined finite element solutions for anisotropic laminated plates, Composite Structures, 183: 63–76, 2018, doi: 10.1016/j.compstruct.2017.01.014.
Carrera E., Kröplin B., Zigzag and interlaminar equilibria effects in large-deflection and postbuckling analysis of multilayered plates, Mechanics of Composite Materials and Structures, 4(1): 69–94, 1997, doi: 10.1080/10759419708945875.
Di Sciuva M., An improved shear-deformation theory for moderately thick multilayered anisotropic shells and plates, ASME Journal of Applied Mechanics, 54(3): 589–596, 1987, doi: 10.1115/1.3173074.
Fallah N., Delzendeh M., Free vibration analysis of laminated composite plates using meshless finite volume method, Engineering Analysis with Boundary Elements, 88: 132–144, 2018, doi: 10.1016/j.enganabound.2017.12.011.
Ferreira A.J.M., Analysis of composite plates using a layerwise theory and multiquadrics discretization, Mechanics of Advanced Materials and Structures, 12(2): 99–112, 2005, doi: 10.1080/15376490490493952.
Ferreira A., Carrera E., Cinefra M., Roque C., Polit O., Analysis of laminated shells by a sinusoidal shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations, Composites Part B: Engineering, 42(5): 1276–1284, 2011, doi: 10.1016/j.compositesb.2011.01.031.
Filippi M., Carrera E., Zenkour A., Static analyses of fgm beams by various theories and finite elements, Composites Part B: Engineering, 72: 1–9, 2015, doi: 10.1016/j.compositesb.2014.12.004.
Golubovic A., Demirdžic I., Muzaferija S., Finite volume analysis of laminated composite plates, International Journal for Numerical Methods in Engineering, 109(11): 1607–1620, 2017, doi: 10.1002/nme.5347.
Jaskowiec J., Plucinski P., Three-dimensional modelling of heat conduction in laminated plate by two-dimensional numerical model, Composite Structures, 171: 562–575, 2017, doi: 10.1016/j.compstruct.2017.03.046.
Jaskowiec J., Plucinski P., Stankiewicz A., Cichon C., Three-dimensional modelling of laminated glass bending on two-dimensional in-plane mesh, Composites Part B: Engineering, 120: 63–82, 2017, doi: 10.1016/j.compositesb.2017.03.008.
Jha D., Kant T., Singh R., A critical review of recent research on functionally graded plates, Composite Structures, 96: 833–849, 2013, doi: 10.1016/j.compstruct.2012.09.001.
Kulikov G.M., Plotnikova S.V., Mamontov A.A., Sampling surfaces formulation for thermoelastic analysis of laminated functionally graded shells, Meccanica, 51(8): 1913–1929, 2016, doi: /10.1007/s11012-015-0347-1.
Kulikov G.M., Plotnikova S.V., Three-dimensional exact analysis of functionally graded laminated composite plates, [in:] Altenbach H., Mikhasev G.I. [Eds], Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures, pp. 223–241, Springer International Publishing, Cham, 2015, doi: 10.1007/978-3-319- 02535-3_13.
Kulikov G.M., Plotnikova S.V., On the use of sampling surfaces method for solution of 3D elasticity problems for thick shells, ZAMM – Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 92(11–12): 910–920, 2012, doi: 10.1002/zamm.201200028.
Kulikov G.M., Plotnikova S.V., Heat conduction analysis of laminated shells by a sampling surfaces method, Mechanics Research Communications, 55: 59–65, 2014, doi: 10.1016/j.mechrescom.2013.10.018.
Kulikov G.M., Plotnikova S.V., Strong sampling surfaces formulation for layered shells, International Journal of Solids and Structures, 121: 75–85, 2017, doi: 10.1016/j.ijsolstr.2017.05.017.
Liu B., Ferreira A.J.M., Xing Y.F., Neves A.M.A., Analysis of functionally graded sandwich and laminated shells using a layerwise theory and a differential quadrature finite element method, Composite Structures, 136: 546–553, 2016, doi: 10.1016/j.compstruct.2015.10.044.
Naebe M., Shirvanimoghaddam K., Functionally graded materials: A review of fabrication and properties, Applied Materials Today, 5: 223–245, 2016, doi: 10.1016/j.apmt.2016.10.001.
Nguyen T.-K., Nguyen V.-H., Chau-Dinh T., Vo T.P., Nguyen-Xuan H., Static and vibration analysis of isotropic and functionally graded sandwich plates using an edge-based MITC3 finite elements, Composites Part B, 107: 162–173, 2016, doi: 10.1016/j.compositesb.2016.09.058.
Pandey S., Pradyumna S., Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory, European Journal of Mechanics – A/Solids, 51: 55–66, 2015, doi: 10.1016/j.euromechsol.2014.12.001.
Pandey S., Pradyumna S., A layerwise finite element formulation for free vibration analysis of functionally graded sandwich shells, Composite Structures, 133: 438–450, 2015, doi: 10.1016/j.compstruct.2015.07.087.
Pandey S., Pradyumna S., Transient stress analysis of sandwich plate and shell panels with functionally graded material core under thermal shock, Journal of Thermal Stresses, 41(5): 543–567, 2018, doi: 10.1080/01495739.2017.1422999.
Rachowicz W., Pardo D., Demkowicz L., Fully automatic hp-adaptivity in three dimensions, Computer Methods in Applied Mechanics and Engineering, 195(37): 4816–4842, 2006, doi: 10.1016/j.cma.2005.08.022.
Rachowicz W., Zdunek A., An h-adaptive mortar finite element method for finite deformation contact with higher order p extension, Computers & Mathematics with Applications, 73(8): 1834–1854, 2017, doi: 10.1016/j.camwa.2017.02.022.
Reddy J.N., Mechanics of laminated composite plates and shells: theory and analysis, 2 nd Ed., Taylor & Francis, 2004.
Ren J., A new theory of laminated plate, Composites Science and Technology, 26(3): 225–239, 1986, doi: 10.1016/0266-3538(86)90087-4.
Swaminathan K., Naveenkumar D.T., Zenkour A.M., Carrera E., Stress, vibration and buckling analyses of FGM plates – a state-of-the-art review, Composite Structure, 120: 10–31, 2015, doi: 10.1016/j.compstruct.2014.09.070.
Swaminathan K., Sangeetha D.M., Thermal analysis of FGM plates – A critical review of various modeling techniques and solution methods, Composite Structures, 160: 43–60, 2017, doi: 10.1016/j.compstruct.2016.10.047.
Szabó B.A., Sahrmann G.J., Hierarchic plate and shell models based on p-extension, International Journal for Numerical Methods in Engineering, 26(8): 1855–1881, 1988, doi: 10.1002/nme.1620260812.
Taylor R.L., Auricchio F., Linked interpolation for Reissner-Mindlin plate elements: Part II – A simple triangle, International Journal for Numerical Methods in Engineering, 36(18): 3057–3066, 1993, doi: 10.1002/nme.1620361803.
Zappino E., Carrera E., Refined One-Dimensional Models for the Multi-Field Analysis of Layered Smart Structures, pp. 343–366, Springer Singapore, Singapore, 2018.
Zboinski G., Application of the three-dimensional triangular-prism hpq adaptive finite element to plate and shell analysis, Computers & Structures, 65(4): 497–514, 1997, doi: 10.1016/S0045-7949(96)00415-4.
Zboinski G., Hierarchical modeling and finite element approximation for adaptive analysis of complex structures, DSc Thesis, Gdansk (Poland), 2001.
Zboinski G., 3D-based hp-adaptive first order shell finite element for modelling and analysis of complex structures – Part 2: Application to structural analysis, International Journal for Numerical Methods in Engineering, 70(13): 1546–1580, 2007, doi: 10.1002/nme.1919.
Zboinski G., Adaptive hpq finite element methods for the analysis of 3D-based models of complex structures. Part 1. Hierarchical modeling and approximations estimation, Computer Methods in Applied Mechanics and Engineering, 1999(45–48): 2913–2940, 2010, doi: 10.1016/j.cma.2010.06.003.
Zboinski G., Adaptive hpq finite element methods for the analysis of 3D-based models of complex structures. Part 2. A posteriori error estimation, Computer Methods in Applied Mechanics and Engineering, 267: 531–565, 2013, doi: 10.1016/j.cma.2013.08.018.
Zboinski G., Jasinski M., 3D-based hp-adaptive first-order shell finite element for modelling and analysis of complex structures – Part 1: The model and the approximation, International Journal for Numerical Methods in Engineering, 70(13): 1513–1545, 2007, doi: 10.1002/nme.1920.
Zienkiewicz O.C., Zhu J.Z., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, International Journal for Numerical Methods in Engineering, 33(7): 1331–1364, 1992, doi: 10.1002/nme.1620330702.
Zienkiewicz O.C., Zhu J.Z., The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity, International Journal for Numerical Methods in Engineering, 33(7): 1365–1382, 1992, doi: 10.1002/nme.1620330703.
DOI: 10.24423/EngTrans.1063.20200102