Płyta Wspornikowa Nieskończenie Długa Obciążona Siłą Skupioną
Assuming that the deformed middle surface of the plate w(x, y) can be represented in the form of the integral (3), the Cauchy residue theorem is made use of to obtain an accurate solution of the differential Eq. (1) with the boundary conditions (2) in the form of Eq. (13). The solution of the problem in the form of Eq. (13)-(16) satisfies all the boundary conditions required (2), as well as the differential Eq. (1) and the conditions at infinity. The roots of the transcendental algebraic Eq. (11) are collated in Tab. 1 for five values of the coefficient of Poisson V.
To show the influence of the coefficient of Poisson y on the state of stress and strain of the plate, the diagrams of Fig. 3-8 have been drawn for the two extreme values of the coefficient, that is for v = 0 and y = 0.5. The first five terms of the series are used for numerical computation.
References
K. GIRKMANN, Dźwigary powierzchniowe (tłumacz. z niemieckiego) Arkady Warszawa, 1957.
W. NOWACKI, Zginanie płyt ciągłych nieskończenie długich, Arch. Mech. Stos., 2, 1 (1949), 173.
H.JUNG, Uber eine Anwendung der Fourier-transformation in der Plattenstatik, Mathematische Nachrichten, 6, 6 (1952), 343.
E. BITTNER, Momententafeln und Einflussflächen für kreuzweise bewehrte Eisenbetonplatten, Springer-Verlag, Wien 1938.
[in Russian]
W. NOWACKI, Dynamika budowli, Arkady Warszawa 1961.
W. MÜLLER, Theorie der elastischen Verformung, Akademische Verlaggesellschaft, Leipzig 1959.
W. NOWACKI, Zagadnienia termosprężystości, PWN Warszawa 1960.
M. T. HUBER, Teoria sprężystości, T.1 i II, PAU, Kraków 1948 i 1950.
M. T. HUBER, Stereomechanika techniczna, PWN Warszawa 1958.
M. T. HUBER, Pisma, T.II, PWN Warszawa 1956.
F. LEJA, Teoria funkcji-analitycznych, PWN-Warszawa 1957.
F. LÖSCH, Siebenstellige Tafeln der elementaren transzendenten Funktionen, Berlin 1954.