Engineering Transactions, 12, 1, pp. 101-113, 1964

Przykłady Kształtowania Belek Sprężonych

A. Brandt
Zakład Mechaniki Ośrodków Ciągłych Instytutu Podstawowych Problemów Techniki PAN

The subject matter of this paper, which is a continuation of the author's former works is the research of the optimum form of a prestressed concrete beam. Sec. 2 brings a solution of the design problem of a rectangular beam by equalizing normal stresses at the ends. The considerations of Sec. 3 concern a rectangular beam designed for minimum potential of elastic forces produced by the useful load. Sec. 4 discusses the design of a double-tee beam with the same condition. In. Sec. 5 devoted also to the design of a double-tee beam is considered a factor originating form the shear forces and hitherto disregarded. In the last section is described an approximate method for determining the influence of shear forces on the form of a double-tee beam. Each particular solution is illustrated by numerical examples and diagrams of the functions obtained expressing the form of the beams.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).


A. BRANDT, Pewne twierdzenie Z zakresu kształtowania wytrzymałościowego belek sprężonych, Rozpr, Inzyn., 4, 11 (1963).

Z. WASIUTYŃSKI, A. BRANDT, Aktualny stan wiedzy o kształtowaniu wytrzymałościowym konstrukcji, Rozpr. Inzyn., 2, 10 (1962).

Z. WASIUTYŃSKI, A. BRANDT, The present state of knowledge in the field of optimum design of structures, Appl. Mech. Rev., 5, 16 (1963).

A. BRANDT, Kształtowanie belek sprężonych przez wyrównywanie skrajnych naprężeni, Rozpr. Inzyn., 2, 8 (1960).

H. G. HOPKINS, Limits of economy of material in plates, J. Appl. Mech., nr 55-APM-2.

E. T. ONAT, W. SCHUMANN, R. T. SHIELD, Design of circular plates for minimum weight, J. Appl. Math. Phys., 6, 7 (1957).

W. PRAGER, R. T. SHIELD, Minimum weight design of circular plates under arbitrary loading, J. Appl. Math. Phys., 4, 10 (1959).

R. T. SHIELD, Plate design for minimum weight, Quart. Appl. Math., 2, 18 (1960).