Engineering Transactions, 15, 1, pp. 143-165, 1967

Osiadanie Półprzestrzeni Konsolidującej pod Działaniem Obciążenia Skupionego w Przypadku Powierzchni Nieprzepuszczalnej dla Cieczy

Z. Sobczyńska
Politechnika Poznańska
Poland

The problem considered in the present paper is that of a consolidating semi-infinite body loaded by a concentrated force acting on the surface. It is assumed that this surface is absolutely impermeable to liquids. The considerations are based on the theory of flow of liquids through porous deformable bodies formulated by Biot. As a result of solution of the equations of the linear consolidation theory an equation is obtained enabling us to determine the relative subsidence of the surface in the course of time. The solution obtained can be used as Green's function for the obtainment of the solution for any load acting on the boundary.
Finally, diagram of relative subsidence of the surface are presented for sandstone at the time t = 1 sec, t = 1 h, and t = 0. The latter diagram coincides with the result known from theory of elasticity under the name of Flamant's solution for a elastic medium.
It is also shown that there is no subsidence at t = 0. This would contradict the suggestion made by Biot and other authors, that there exists immediate subsidence.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

M.A. BIOT, General theory of three-dimentional consolidation, J. Appl. Phys., 12 (1941), 115-164.

M.A. BIOT, Theory of stress strain relations in anisotropic viscoelasticity and relaxation phenomens, J. Appl. Phys., 25 (1954), 1385-1391.

M.A. BIOT, General solutions of the equations of elasticity and consolidation of a porous material, J. Appl. Phys., (1956), 91-96.

M.A. BIOT, D. G. WILLIS, The elastic coefficients of the theory of consolidation, J. Appl. Mech., 24 (1957), 594-601.

W. DERSKI, O zagadnieniach teorii konsolidacji, Arch. Hydr., 1, 13 (1966).

6. В. А. Диткин, Ч. П. Кузнецов, Справочник по операционному исчислению, Гос, Из. Тех.-Теор. Лит., Москва 1951.

G. DOETSCH, Praktyka przekształcenia Laplace'a, PWN, Warszawa 1964.

A. ERDELYI, W. MAGNUS, F. OBERHETINGER, F. TRICOMI, Tables of Integral Transforms. V. I., McGraw-Hill, New York 1945.

I. FATT, The Biot-Willis elastic coefficients for a sandstones, J. Appl. Mech., 26, ser. E, (1959), 296-297.

G. M. FICHTENHOLZ, Rachunek różniczkowy i całkowy, t. I, PWN, Warszawa 1962,

K. GIRKMANN, Dźwigary powierzchniowe, wyd. IV, PWN, Warszawa 1956.

К. А. Карпов, Таблицы функций […] комплексной области, Из. АН СССР, Москва 1958.

W.N. LEBIEDIEW, Funkcje specjalne i ich zastosowania, PWN, Warszawa 1957.

J. McNAMEE, R. E. GIBSON, Plane strain and axially symmetric problems of the consolidation of a semi-infinite clay stratum, J. Mech. Appl. Math., 13 (1960), 210-227.

В. M. Немыцкий, А, С Людская, Черкасов, Курс математического анализа, т. 2, Гос. Из. Тех.-Теор. Лит., Москва 1957.

I. M. RYZK, I. S. GRADSTEIN, Tablice całek, sum, szeregów i iloczynów, PWN, Warszawa 1964.

A. SALUSTOWICZ, J. GALANKA, Mechanika górotworu, AGH (1960).

W.I. SMIRNOW, Matematyka wyższa, PWN, Warszawa, t. 1, (1958), t. 2, (1960).

И. Снеддон, Преобразования Фурье, И. Л., Москва 1954.

Z. SOBCZYŃSKA, Osiadanie półprzestrzeni konsolidującej pod działaniem obciążenia skupionego, Rozpr. Inżyn., 3, 14 (1966).

Таблицы интегральной показательной функций, Из. Ак. Н. (1954).

M. WARMUS, Tablice funkcji elementarnych, PWN, Warszawa 1960.