Engineering Transactions, 15, 1, pp. 3-18, 1967

Nacisk Stempla na Niejednorodna Półpłaszczyznę Sprężystą

B. Stachowicz
Politechnika Krakowska
Poland

G. Szefer
Politechnika Krakowska
Poland

An effective solution is obtained for the contact problem of a symmetric body of any form in contact without friction with a nonhomogeneous elastic semi-infinite panel (Fig, 1). The nonhomogeneity of the body is expressed by a modulus of elasticity variable with the depth, in the form (1.1). Solution is obtained by using the Airy stress function and applying the Fourier integral trans- formation.
The contact problem is reduced to dual integral equations (2.19) which are reduced, by means of the Noble method to a Fredholm integral equation of the first kind (2.25), for which is obtained an approximate (for a small nonhomogeneity parameter A) but effective solution expressed in quadratures (3.20).
The two examples given concern a blunt body and a wedge. The solutions (in the class of elementary functions) are obtained in both cases. The paper contains diagrams of stresses under the body in contact (Fig. 4).


Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

K. GIRKMAN, Dźwigary powierzchniowe, Arkady, Warszawa 1957.

M.J. LIGHTHILL, Wstęp do analizy Fouriera i teorii dystrybucji, PWN, Warszawa 1963.

B. NOBLE, Certain dual integral equations, J. Math. Phys., 2, 1958.

M. PREDELEANU, P. P. TEODORESCU, Quelques considerations sur le problème de corps elastiques heterogenes, Non-Homogeneity in Elast. and Plastic., Proc. of the IUTAM Symp., Perg. Press, London 1958.

H. A. Ростовцев, К теории упругости неоднородной среды, Прикл, Мат. Мех., 4, 28 (1964).

W. SCHMEIDLER, Integralgleichungen mit Anwendungen in Physik u. Technik, Lipsk 1955.

B. STACHOWICZ, G. SZEFER, O pewnym zagadnieniu kontaktowym niejednorodnej półpłaszczyzny sprężystej, Mech. Teoret. i Stosow., 2, 1966.

G. SZEFER, Solution of certain dual integral equations, Arch. Mech. Stos., 4, 16 (1964).