Engineering Transactions, 17, 3, pp. 473-483, 1969

Pewna klasa losowych profili prędkości

T. Chmielniak
Politechnika Śląska w Gliwicach
Poland

The paper concerns the determination of statistical chance characteristics of velocity profiles. and values of friction for flow along an infinite plane wall with an assumed constant velocity of fluid sucking off. The velocity of the potential stream is a time chance function of known expectation value and correlation function. Utilizing the method of correlation analysis the expectation values were determined of the processes (2.1) and (2.3) the correlation function (2.2) and (2.4) and the mean squares of velocity and friction (2.5), (2.6) were determined. The given solutions have been selected
for a several assumed stochastic courses (stationary and nonstationary) of the velocities of the potential stream. The more interesting results have been illustrated with figures.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

J. WATSON, A solution of the Navier-Stokes equation illustrating the response of laminar boundary

layer to given change in the external stream velocity, Quart. J. Mech. Appl. Math., 11; 1958.

J. T. STUART, A solution of the Navier-Stokes and energy equations illustrating the response of skin friction and temperature of an infinite plate thermometer to fluctuations in the stream velocity, Proc. Roy. Soc., A 231, 1955, 116-130

H. SCHLICHTING, Grenzschicht-Theorie, Verlag G. Braun, Karlsruhe 1965.

M. J. LIGHTHILL, The response of laminar skin friction and heat transfer to fluctuations in the stream velocity, Proc. Roy. Soc., A 224, 1954.

C.C. LIN, Motion in the boundary layer with a rapidly oscillating external flow, Proc. 9th. Intern. Congress Appl. Mech., Brussel 1957 (cyt. z. 3).

W.S. PUGACZEW, Teoria funkcji przypadkowych i jej zastosowanie do zagadnień sterowania automatycznego, MON, Warszawa 1960.

W. W. BOLOTIN, Metody statystyczne w mechanice budowli, Arkady, Warszawa 1968.

А. С. Монин, A. M. Яглом, Статическая гидромеханика, ч. I. Наука, 1965.

I. I. GICHMAN, A. W. SKOROCHOD, Wstęp do teorii procesów stochastycznych, PWN, Warszawa 1968.