Engineering Transactions, 17, 3, pp. 403-433, 1969

Naprężenia dynamiczne w cienkiej tarczy kołowej, wywołane działaniem nieustalonych źródeł ciepła

S. Woelke
Politechnika Poznańska
Poland

In the paper the fields have been determined of temperature, displacements and dynamic stresses in a thin circular disk, caused by the action of heat sources of periodically varying and of constant output with time. The cases have been considered of the action of sources placed in a circle and within a circular region. The analysis of solutions obtained for heat sources with periodically varying output with time enabled to formulate the view that this kind of thermal forcing might be the cause of mechanical resonance vibration of the disk. The high resonance frequencies ensure
that this type of mechanical resonance does not endanger machine constructions.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

W. DERSKI, A dynamic problem of thermoelasticity concerning a thin circular plate, Arch. Mech. Stos., 2, 13 (1961).

F. LEJA, Teoria funkcji analitycznych, PWN, Warszawa 1957. 3. N. W. McLACHLAN, Complex Variable Theory and Transform Calculus, University Press, Cambridge 1963.

E. MELAN, H. PARCUS, Wärmespannungen infolge stationärer Temperaturfelder (tłum. ros.), Moskwa 1958.

W. NOWACKI, A dynamical problem of thermoelasticity, Arch. Mech. Stos., 3, 9 (1957).

W. NOWACKI, Zagadnienia termosprężystości, PWN, Warszawa 1960.

J. OSIOWSKI, Zarys rachunku operatorowego, WNT, Warszawa 1965.

H. PARKUS, Instationare Wärmespannungen, Springer-Verlag, Vien 1959.

W. PIECHOCKI, Axisymmetric dynamic problem of thermoelasticity for a solid sphere, Arch. Mech. Stos., 4, 12 (1960).

A. SINGH, P. PURI, Dynamic thermal stress in an infinite slab, Arch. Mech. Stos., 1, 15 (1963).

M. SOKOŁOWSKI, The axially symmetric thermoelastic problem of the infinite cylinder, Arch. Mech. Stos., 6, 10 (1958).

E. STERNBERG and J.G. CHAKRAVORTY, Thermal shock in an elastic body with a spherical cavity, Quart. Appl. Math., 2, 17 (1959).

G. N. WATSON, Theory of Bessel Functions, University Press, Cambridge 1962.