Engineering Transactions, 18, 3, pp. 371-390, 1970

Kształtowanie Niekołowych Cylindrów Grubościenych Wskazujących Pełne Uplastycznienie w Stadium Zniszczenia

Z. Kordas
Politechnika Krakowska, Kraków
Poland

M. Życzkowski
Politechnika Krakowska, Kraków
Poland

This paper deals with the problem of seeking the shapes of non-circular thick-walled cylinders which indicate full plasticization upon reaching the limiting load capacity, under a constant external and internal pressure.
A thick-walled cylinder is considered with variable radii a(ϑ) and b(ϑ) in the form of a series of the parameter α which characterizes the non-circularity of the cylinder [formulae (3.1)]. Assuming a plane state of deformation and incompressibility of the material, the state of stress is determined in cylindrical coordinates by means of three components σr, σ and τr0 were expanded into a series of the parameter α), the problem of eigenvalues is obtained in the first approximation. The condition for the existence of non-zero solutions is determined by the double sequence of the ratios of the cylinder dimensions [formulae (3.25)].
In paragraph 3.6 a compilation is given of the obtained formulae with an accuracy to the second approximation. Namely, the formulae (3.46) determine the shape of the cylinder as a function of the angle ϑ, whist formulae (3.48) determine the components of the state of stress as a function of the angle ϑ and radius τ.
Two numerical examples are analysed in detail in p. 4, whilst in 5 the method is given of determining the Hencky-Prandtl nets for the cylinders under consideration, and such a net is shown in one of the particular cases.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

D. C. DRUCKER, R. T. SHIELD, Design for minimum weight, Proc. 9-th Intern. Congr. Appl. Mech., 5 Brussels 1956, 212-222.

D. C. DRUCKER, R. T. SHIELD, Bounds on minimum weight design, Quart. Appl. Math., 3, 15 (1957), 269-281.

R. HILL, The mathematical theory of plasticity, Oxford Univ. Press, 1950.

Д. Д. Ивлев, Приближенное решение методом малого параметра плоских упруго-пласти-ческих задач теории идеальной пластичности, Вестник Моек. Унив., № 5, 1957, 17-26.

W. KRZYŚ, M. ŻYCZKOWSKI, Sprężystość i plastyczność – wybór zdań i przykładów, PWN, Warszawa 1962.

Z. MRÓZ, On a problem of minimum weight design, Quart. Appl. Math., 3, 19 (1961), 127-135.

Z. MRÓZ, Limit analysis of plastic structures subject to boundary variations, Arch. Mech. Stos., 1, 15 (1963), 63-76.

W. OLSZAK, Z. MRÓZ, P. PERZYNA, Recent trends in the development of the theory of plasticity, Pergamon Press – PWN, Oxford – Warszawa 1963.

9. M. И. Рейтман, Г. С. Шапиро, Теория оптимального проектирования в строительной механике, теории упругости и пластичности, Итоги Науки, Механика, Упругость и пла-стичность 1964. Москва 1966.

C. Y. SHEU, W. PRAGER, Recent developments in optimal structural design, Appl. Mech. Reviews, 10, 21 (1968), 985-992.

J. SKRZYPEK, M. ŻYCZKOWSKI, Non-symmetrical plastic collapse modes of a symmetrically loaded circular cylinder, Acta Mechanica, 2 – 3, 7 (1969), 213 – 223.

В. В. Соколовский, Теория пластичности, Гостехиздат, Москва 1950; tłum. pol. PWN, Warszawa 1957.

A. J. M. SPENCER, Perturbation method in plasticity, J. Mech. Phys. Solids, 3, 9 (1961), 279-288; 1, 10 (1962), 17-26; 2, 10 (1962), 165-177.

Z. WASIUTYŃSKI, A. BRANDT, The present state of knowledge in the field of optimum design of structures, Appl. Mech. Rev., 5, 16 (1963), 341-350.