Engineering Transactions, 18, 2, pp. 171–183, 1970

Optymalizacja Parametryczna Układu Drgającego o Dwóch Stopniach Swobody

B. Olszowski
Politechnika Krakowska, Kraków
Poland

Discussed here is the problem of the optimum shaping of a vibrating cantilever system in steady state under the influence of harmonic force acting on one of the concentrated masses. The shaping is carried out with a fixed structure of the system through an optimum selection of two independent parameters which determine the ratios of the masses and rigidities by the way of minimization of the amplitude of elastic energy of the system. Practical rules of selection of parameters arc given for two cases of forcing acting either on one concentrated mass, or the other, together with a nomogramme determining the mutual dependence between the eigen frequencies and the parameters of optimization.
The results of the considerations are illustrated by a numerical examples.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

B. B. Турецкий, Об одной задаче оптимального управления, Изв. AH CCCP, Механюса, 1, 1965,

B. B. Гурей, Предельные возможности защиты оборудования om воздействия ударов, Изв. AH CCCP, Mexarea, 2, 1965.

M. 3. Коловский, Нелинейная теория виброзащитпых систем, Изд. «Наука», Москва 1966.

М. Колсвашй, Об оптимальной амортизации, Машиноведение, 5, 1966.

B. OLSZOWSKI, Efficiency of the optima! shock isolation, Rev. Romn. Sci. Techn. - Mec, Appl., 5, 13 (1968).

B. OLSZOWSKI, Kształtowanie dynamiczne elementów konstrukcji, Mech. Teor. Stos., 3, 7 (1969).

F. I. NIORDSON, On the optimal design of a vibrating beam, Quart. Appl. Math., 1, 23 (1965).

M. J. TURNER, Design of minimum mass structures with specified natural frequencies, AIAA­Joumal, 3, 5 (1967),

J. E. TAYLOR, Minimum mass bar for axial vibration at specified natural frequency, AIAA­Joumal, 10, 5 (1967).

C. W. MERRIAM III, Teoria optymalizacji i projektowanie układów sterowania automatycznego, WNT, Warszawa 1967.

G. HADLEY, Nonlinear and Dynamic Programming, Addison-Wesley Publishing Company, London 1964.