Engineering Transactions, 19, 4, pp. 585–599, 1971

Małe Punktowo-Symetryczne Drgania Ośrodka Sprężystego Odkształcającego się z Upływem Czasu

B. Duszczyk
Instytut Podstawowych Problemów Techniki

Z. Wesołowski
Instytut Podstawowych Problemów Techniki

A small motion is superimposed on the finite motion of a sphere with the radius increasing uniformly with time. The fundamental deformation determined, a small time-dependent displacement field is imposed on this motion. The equations to be satisfied by these small displacements are found, their trivial solutions being derived. After expanding the additional displacements into a Fourier series of spherical functions the case is considered when the solution is a product of a function of time and a function of the remaining variables. It is shown that the only possible vibrations are, in this case, radial vibrations of the sphere.
A plane wave propagating in the sphere undergoing the finite deformation is considered.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).


Z. WESOŁOWSKI, Stability of a full elastic sphere uniformly loaded on the surface, Arch. Mech. Stos., 16, 5, 1964.

A. B. GREEN, W. ZERNA, Theoretical elasticty, Oxford 1954.

A. E. GREEN, R. S. RIVLIN, R. T. SHIELD, General theory of small elastic deformations, Proc. Roy. Soc., A211, 1952.

S. ZAHORSKI, Some problems of motion and stability for hygrosteric materials, Arch. Mech. Stos., 15, 6, 1963.

E. KAMKE, Differentialgleichungen, Leipzig 1964.

F. D. MURNAGHAN, Finite deformations of an elastic solid, New York 1951.