Engineering Transactions, 21, 4, pp. 559–575, 1973

Osiowo-Symetryczne Zagadnienie Teorii Konsolidacji w Przypadku Powierzchni Przepuszczalnej dla Cieczy

Z. Kończak
Instytut Mechaniki Technicznej, Poznań
Poland

The object of considerations is a consolidating halfspace loaded at the surface by a concentrated force. The theory is based on a linear theory of fluid flow through a porous deformable medium as formulated by Biot. Solution of the system of equations of the linear consolidation theory yields a formula making it possible to determine the settlement of a consolidating halfspace as a function of time. Initial conditions of the problem, satisfied by the solution, are discussed; the conditions are not fulfilled by the solutions known earlier. The relation between the solution presented and that by Boussinesq (known from elasticity) is shown. At P=1 the solution derived becomes Green's function and thus may be used to construct the solutions for arbitrarily distributed, time-dependent loading of the surface. A qualitative illustration of the solution is presented in the form of graphs made for fluid- saturated sandstone, for times t=0, t=1 s., t=1 h. and t tending to infinity.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

M. A. BIOT, General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164, 1941.

M. A. BIOT, Theory of stress-strain relations in anisotropic viscoelasticity and relaxiation phenomens, J. Appl. Phys., 25, 1385 - 1391, 1954.

M. A. BIOT, General solutions of the equations of elasticity and consolidation of a porous material, J. Appl. Phys., 23, 91 -96, 1956.

M.A. BIOT, D. G. WILLIS, The elastic coefficients of the theory of consolidation, J. Appl. Mech., 24, 594 601, 1957.

W. DERSKI, A method of solving of the system equations of consolidation theory, Bult. Acad. Polon. Sci., Série Sci. Techn., 12, 489 -493, 1964.

W. DERSKI, I. KISIEL, O warunkach początkowych w zagadnieniach teorii konsolidacji, Arch. Hydrot., 16, 1, 31 - 37, 1969.

G. DOETSCH, Praktyka przekształcenia Laplace'a, PWN, Warszawa 1964.

I. FATT, Compressibility of sandstones at low to moderate pressures, Bull. Amer. Ass. Petr. Geol., 42, 8, 1958.

I. FATT, The Biot-Willis elastic coefficients for a sandstones, J. Appl. Mech., 26, ser. E, 296 - 297, 1959.

10. И. С. Градштейн, И, М, Рыжик, Таблицы интегралов, сумм, рядов и произведений, изд,

-е, Гос. Изд. Физ.-Мат. Лит., Москва 1962.

J. MANDEL, Consolidation des sols, Géotechnique, 7, 3, 1953.

J. MANDEL, Tassement d'un couche d'argile satureé d'eau sous effect d'une force concentreé a la surface du sol, Proc. 3th. ICOMEF, 2, 1953.

N. W. McLACHLAN, Funkeje Bessela dla inzynierów, PWN, Warszawa 1964.

J. McNAMER, R. E. GIBSON, Displacement functions and linear transform applied to diffusion through porous elastic media, J. Appl. Math., 13, 98 - 111, 1960.

J. McNAMEE, R. E. GIRSON, Plane strain and axially symmetric problems of the consolidation of a semi-infinite clay stratum, J. Appl. Math., 13, 210 - 227, 1960.

W. NOWACKI, Teoria sprężystości, PWN, Warszawa 1970.

J. OSIOWSKI, Zarys rachunku operatorowego, WNT, Warszawa 1956.

A. SALUSTOWICZ, J. GALANKA, Mechanika górotworu, AGH, 1960. 19.

W.I. SMIRNOW, Matematyka wyższa, 2, PWN, Warszawa 1960.