Engineering Transactions, 21, 3, pp. 473–493, 1973

Wyznaczanie Współczynników Transportu w Gazach za Pomocą Rur Uderzeniowych

A.S. Cukrowski
Instytut Podstawowych Problemów Techniki, Warszawa

J. Luboński
Instytut Podstawowych Problemów Techniki, Warszawa

Z.A. Walenta
Instytut Podstawowych Problemów Techniki, Warszawa

Possibilities of the application of a shock tube for the determination of transport coefficients in gases arc presented. At the beginning, a description of phenomena occurring in the shock tubes (Section 2), as well as a thermodynamic description of the viscosity and thermal conductivity coefficients (Section 3) are given. In Section 4.1 it is shown that these coefficients cannot be obtained from the phenomenological fluid dynamic description of the shock wave structure. The molecular description of this structure allows to determine the intermolecular potentials and to calculate the transport coefficients (Section 4.2). Examination of the viscous boundary layer behind the primary shock wave (Section 4.3) and the thermal boundary layer behind the reflected shock wave (Section 4.4) enables us to determine the dependence of transport coefficients on the temperature. The majority of results are obtained from the reflected shock wave examination. In the table there are indicated the individua1 authors, kinds of gases, temperature ranges, experimental techniques, and the corresponding theoretical approaches.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).


Proceedings of the sixth international shock tube symposium, Phys. Fluids, 12, 5, Part If, 1969.

Shock Tubes, Proceedings of the seventh international shock tube symposium, Ed. Glass, University of Toronto Press, Toronto 1970.

Shock tube research. Proceedings of the eighth international shock tube symposium. Stollery, Ed. Gayden and Owen, Chapman and Hall, London 1971.

R. L. BELFORD, R. A. STREHLOW, Shock tube technique in chemical kinetics, Annual Rev. Phys. Chem., 20, 247, 1969.

R. A. STREHLOW, A review of shock tube chemistry, Progress in high temperature physics and chemistry, 3. Ed. Rouse, Pergamon Press, Oxford 1969.

H. OERTEL, Stossrohre, Springer Verlag, Vien 1966.

Z. A. WALENTA, T.T. RUDOWSKA, Rura uderzeniowa. Pomiary i wnioski, Rozpr. Inżyn., 12, 3, 493, 1964.

Rura uderzeniowa jako reaktor chemiczny, Praca zbiorowa, Prace IPPT, 29, 1970.

S. R. DE GROOT, P. MAZUR, Non-equilibrium thermodynamics, North. Holland Publ. Comp., Amsterdam 1962.

K. GUMINSKI, Termodynamika procesów nieodwracalnych, PWN, Warszawa 1962.

S. CHAPMAN, T.G. COWLING, The mathematical theory of Hon-uniform gases, Cambridge University Press, Cambridge 1970.

J.O. HIRSCHFELDER, C. F. CURTISS, R. B. BIRD, Molecular theory of gases and liquids, Wiley and Sons, New York 1964.

TÖDHEIDE, F. HENSEL, E. U. FRANCK, Wärme leitfähigkeit von Gasen, Landolt-Börnstein, Zahlenwerte und Funktionen, Il Band, Eigenschaften der Materie in ihren Aggregatzuständen, 5. Teil, Transport Phänomene, Kinetik, Homogene Gas gleichgewichte, Springer Verlag, Berlin 1968.

H. J. M. HANLEY, Some experimental comments on the dilute gas transport expressions, Transport phenomena in fluids, Ed. Hanley, Marcel Decker, New York 1969.

H. J. M. HANLEY, M. KLEIN, On the selection of the intermolecular potential function: Application of statistical mechanical theory to experiment. NBS Technical Note 360, Washington 1967.

M. KLEIN, H. J. M. HANLEY, m-6-8 potential function, J. Chem. Phys., 53, 12, 4722, 1970.

H. J. M. HANLEY, G. E. CHILDS, Discrepancies between viscosity data of simple gases, Science, 159, III4, 1968.

W. PROSNAK, Struktura płaskiej fali uderzeniowej, Rozpr. Inzyn., 3, 3, 361, 1955.

F. S. SHERMAN, L. TALBOT, Experiment versus kinetic theory for rarefied gases, Rarefed gas dynamics, Ed. Devienne, Pergamon Press, London 1960.

H. W. LIEPMAN, R. NARASIMHA, M. T. CHAHINE, Structure of a plane shock layer, Phys. Fluids, 5, 11, 1313, 1962.

J. W. BOND Jr., K. M. WATSON, J. A. WELCH, Jr., Atomic theory of gas dynamics, Addison- Wesley Reading, Massachusetts, 1965.

Non-equilibrium thermodynamics. Variational techniques and stability, Ed. R. J. Donelly, R. Her- man, I. Prigogine, University of Chicago Press, Chicago 1966.

R. S. SCHECHTER, The variational method in engineering, Mc Graw-Hill Book Company, New York 1967.

I. GYARMATI, Non-equilibrium thermodynamics. Field theory and variational principles, Springer Verlag, Berlin 1970.

L. H. HOLWAY, Kinetic theory of shock structure using an ellipsoidal distribution function, Rarefied gas dynamics, Fourth Inner. Symp., Ed. de Leeuw, Academic Press, New York-London 1965.

D. S. BUTLER, W. M. ANDERSON, Shock structure calculations by an orthogonal expansion method, Rarefied gas dynamics, Fifth Inter. Symp., Ed. Brundin, Academic Press, New York-London 1967.

B. L. HICKS, S. M. YEN, Solution of the non-linear Boltzmann equation for plane shock waves, Rarefied gas dynamics, Sixth Intern. Symp., Ed. Trilling, Wachman, Academic Press, New York-London 1969.

G. A. BIRD, Shock -wave structure in rigid sphere gas, Rarefied gas dynamics, Fourth Intern. Q. Symp., Bd. de Leeuw, Academic Press, New York-London 1965.

G. A. BIRD, The formation and reflection of shock waves, Rarefied gas dynamics, Sixth Intern: Symp., Ed. Trilling, Wachman, Academic Press, New York-London 1969.

G. A. BIRD, Direct simulation Monte Carlo method-current status and prospects, Rarefied gas dynamics, Sixth Intern. Symp., Ed. Trilling, Wachman, Academic Press, New York-London 1969.

B. SCHMIDT, Electron beam density measurements in shock waves, J. Fluid Mech., 39, 2, 1969.

R. A. MATULA, High temperature thermal conductivity of rare gases and gas mixtures, J. Heat Trans. ASME, series C, 90, 3, 1968.

G. A. BIRD, Aspects of the structure of strong shock waves, Phys. Fluids, 13, 5, 1970.

H. PACZYŃSKA, Z. A. WALENTA, Influence of the main flow parameters and transport properties of gas on certain class of schock-tube boundary layers, Fluid Dynamics Trans., 4, Ed. Fiszdon, Kucharczyk, Prosnak, PWN, Warszawa 1969.

R. A. HARTUNIAN, P. V. MARRONE, Heat transfer from dissociated gases in a shock-tube, GAL Rept. No. AD-1118-A-7, AFOSR TN 58-1087.

F. A. GOLDSWORTHY, The structure of a contact region, with application to the reflexion of a shock from a heat conducting wall, J. Fluid Mech., 51, 1959.

T. A. THOMSON, Heat transport to a solid wall from a suddenly heated gas, Dept. of Supply, A.R.L. Aero. Note 186, 1960.

R. EWALD, H. GROENIG, Direct measurement of the thermal conductivity of shock heated argon, AIAA J. 9, 5, 1971.

Z. A. WALENTA, Analogue networks for high heattransfer rate measurements in shock tubes and shock tunnels, Shock tube, Proc. of Fifth Intern. Symp., White Oak, Silver Springs, Maryland, 1965,

M. R. LAUVER, Shock-tube thermal conductivity, Phys. Fluids, 7, 4, 1964.

G. SMEETS, Bestimmung der Waermeleitfaehigkeit heisser Gase aus der Temperaturgrenzschicht im Stossrohr, Zeitschr. f. Naturforsch., 20a, 683, 1965.

M. CAMAC, R. M. FEINBERG, Thermal conductivity of argon at high temperatures, J. Fluid Mech., 21, 4, 1965.

J. A. FAY, N. H. KEMP, Theory of heat transfer to a shock-tube and wall from an ionized monatomic gas, J. Fluid Mech., 21, 4, 1965.

D. J. COLLINS, R. GREIF, A. E. BRYSON, Measurements of the thermal conductivity of helium in the temperature range 1600-6700°K, Int. J. of Heat and Mass Transfer, 8, 9, 1965.

D. J. COLLINS, W. A. MENARD, Measurements of the thermal conductivity of noble gases in the temperature range 1500 to 5000 Deg Kelvin, J. Heat Transfer, Trans. ASME, series C, 88, 1, 1966.

I. O. BUNTING, R.S. DEVOTO, D. BERSHADER, Thermal conductivity of shock-heated argon, Phys. Fluids, 12, 5, 2, 1969.

V. KMONICEK, J. MASTOVSKY, J. MALESAK, Tepelna vodivost dusiku a argonu za vysokych teplot, Strojnicky Casopis, 19, 2-3, 1968.

R. A. KUIPER, Interferometric study of the end-wall thermal layer in ionizing argon, Shock Tubes, Proc. Seventh Inter. Shock Tube Symp., Ed. Glass, University of Toronto Press, Toronto 1970.

C. F. CURTISS, Transport phenomena in gases, Annual Rev. Phys. Chem., 18, 125, 1967.