Engineering Transactions, 71, 1, pp. 111–140, 2023

On Spatial vs Referential Isotropic Fourier’s Law in Finite Deformation Thermomechanics

Balbina WCISŁO
Cracow University of Technology

Cracow University of Technology

TU Dortmund University

Andreas MENZEL
TU Dortmund University/Lund University

This paper deals with the issue of isotropic heat conduction in thermomechanical largestrain problems. The aim of the paper is a comparison of different variants of Fourier’s law used in the literature for a large strain problem. In particular, Fourier’s law is specified either in the reference or in the deformed configuration by using different options of heat flux density vectors which are presented and discussed. The paper includes working examples to illustrate the presented theory. Moreover, different formulations of Fourier’s law are tested by using the finite element method to investigate the influence of the applied variant on simulation results. The analysis reveals that in a strongly deformed area the temperature distribution varies.

Keywords: heat conduction; isotropic Fourier’s law; large strains; thermo-mechanical coupling
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).


Abeyaratne R., Continuum Mechanics, Volume II of Lecture Notes on the Mechanics of Solids, Electronic Publication, notes.html, 2020.

Abeyaratne R., Knowles J. K., On the stability of thermoelastic materials, Journal of Elasticity, 53: 199–213, 1999, doi: 10.1023/A:1007513631783.

Bonet J., Wood R. D., Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd ed., Cambridge University Press, Cambridge 2008.

Ĉanadija M., Brnić J., Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters, International Journal of Plasticity, 20(10): 1851–1874, 2004, doi: 10.1016/j.ijplas.2003.11.016.

de Souza Neto E. A., Perić D., Owen D.R.J., Computational Methods for Plasticity. Theory and Applications, John Wiley & Sons, Ltd, Chichester 2008.

Haupt P., Continuum Mechanics and Theory of Materials, Springer-Verlag, Berlin 2002.

Holzapfel G.A., Simo J.C., Entropy elasticity of isotropic rubber-like solids at finite strains, Computer Methods in Applied Mechanics and Engineering, 132(1–2): 17–44, 1996, doi: 10.1016/0045-7825(96)01001-8.

Hughes T.J.R., The Finite Element Method. Linear Static and Dynamic Analysis, Prentice-Hall, New Jersey 1987.

Jemioło S., Thermoelasticity and Heat Flux in Anisotropic Materials [in Polish: Termosprężystość i przepływ ciepła w materiałach anizotropowych], Publishing House of the Warsaw University of Technology, Warsaw 2015.

Korelc J., Automation of the finite element method, [in:] Nonlinear Finite Element Methods, P. Wriggers, Ed., Springer-Verlag, Berlin Heidelberg, 2008, pp. 483–508.

Korelc J., Automation of primal and sensitivity analysis of transient coupled problems, Computational Mechanics, 44: 631–649, 2009, doi: 10.1007/s00466-009-0395-2.

Korelc J., Šolinc U., Wriggers P., An improved EAS brick element for finite deformation, Computational Mechanics, 46: 641–659, 2010, doi: 10.1007/s00466-010-0506-0.

Korelc J., Wriggers P., Automation of Finite Element Methods, Springer, Switzerland 2016.

LeMonds J., Needleman A., Finite element analyses of shear localization in rate and temperature dependent solids, Mechanics of Materials, 5(4): 339–361, 1986, doi: 10.1016/0167-6636(86)90039-6.

Miehe C., Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation, Computer Methods in Applied Mechanics and Engineering, 120(3–4): 243–269, 1995, doi: 10.1016/0045-7825(94)00057-T.

Mucha M., Wcisło B., Pamin J., Simulation of PLC effect using regularized large-strain elasto-plasticity, Materials, 15(12): 21 pages, article no. 4327, 2022, doi: 10.3390/ma15124327.

Nowacki W., Theory of Elasticity [in Polish: Teoria sprężystości], PWN, Warsaw 1970.

Oppermann P., Denzer R., Menzel A., A thermo-viscoplasticity model for metals over wide temperature ranges-application to case hardening steel, Computational Mechanics, 69(3): 541–563, 2021, doi: 10.1007/s00466-021-02103-4.

Reddy J.N., Gartling D.K., The Finite Element Method in Heat Transfer and Fluid Dynamics, CRC Press, Boca Raton 2010.

Ristinmaa M., Wallin M., Ottosen N.S., Thermodynamic format and heat generation of isotropic hardening plasticity, Acta Mechanica, 194: 103–121, 2007, doi: 10.1007/s00707-007-0448-6.

Simo J.C., Numerical analysis and simulation of plasticity, [in:] Handbook of Numerical Analysis, P. Ciarlet and J. Lions, Eds., vol. VI, Elsevier Science B.V., Boca Raton,, pp. 183–499, 1998.

Simo J.C., Miehe C., Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation, Computer Methods in Applied Mechanics and Engineering, 98(1): 41–104, 1992, doi: 10.1016/0045-7825(92)90170-O.

Vujošević L., Lubarda V.A., Finite-strain thermoelasticity based on multiplicative decomposition of deformation gradient, Theoretical and Applied Mechanics, 28–29: 379–399, 2002, doi: 10.2298/TAM0229379V.

Wcisło B., Pamin J., Local and non-local thermomechanical modeling of elastic-plastic materials undergoing large strains, International Journal for Numerical Methods in Engineering, 109(1): 102–124, 2017, doi: 10.1002/nme.5280.

Wriggers P., Nonlinear Finite Element Methods, Springer-Verlag, Berlin 2008.

Wriggers P., Miehe C., Kleiber M., Simo J.C., On the coupled thermomechnical treatment of necking problems via finite element methods, International Journal for Numerical Methods in Engineering, 33(4): 869–883, 1992, doi: 10.1002/nme.1620330413.

Zienkiewicz O.C., Taylor R.L., Zhu J.Z., The Finite Element Method: Its Basis and Fundamentals, 6th ed., Elsevier Butterworth-Heinemann, 2005.

DOI: 10.24423/EngTrans.2460.20230214