Podstawy Teorii Plastycznego Płynięcia Ciał Dyskretyzowanych
The paper formulates the foundations of the theory of plastic flow of discretized bodies. Under the notion of a discretized body we understand an approximate model of continuous media derived in the process of discretization. The solution of the problem of the load carrying capacity of two types of plane gridworks serves as an example of application of the theory.
References
Cz. WOŹNIAK, Basic concepts of the theory of discrete elasticity, Bull. Acad. Polon. Sci., Série Sci. Techn., 19, 10, 1971.
Cz. WOŹNIAK, Basic concepts of the difference geometry, Annal. Polon. Math., 28.
Cz. WOŹNIAK, Discrete elasticity, Arch. Mech. Stos., 23, 6, 1971.
Cz. WOŹNIAK, Discrete elastic Cosserat systems, Arch, Mech. Stos., 25, 2, 1973.
Cz. WOŹNIAK, Basic concepts of mechanics of discretized bodies, MTiS No. 4, 1972.
O.C. ZIENKIEWICZ, Metoda elementów skończonych, Arkady, Warszawa 1972.
S. KONIECZNY, Cz. WOŹNIAK, Lattice-type structure as the problem of discrete elasticity, Bull. Acad. Polon. Sci., Série Sci. Techn., 19, 11 - 12, 1971.
M. KLEIBER, Staties of elastic lattice-type shells, Arch. Mech. Stos., 25, 2, 1973.
M. K.LEIBER, The approximate methods in the theory of elastic lattice-type shells, Arch. Mech. Stos., 25, 2, 1973.
W. OLSZAK, P. PERZYNA, A. SAWCZUK i inni, Teoria plastyczności, PWN, Warszawa 196,
A. H. LEE, Elastic-plastic deformation at finite strain, J. Appl. Mech., 36, 1, 1969.
A. E. GREEN, P. M. NAGHDI, A general theory of elastic-plastic continuum, Arch. Rat. Mech. Anal., 18, 4, 1965.
M. GRIGORIAN, A lower-band solution to the collapse of uniform rectangular grids on simple supports, Int. J. Mech. Sci., 13, 755 - 776, 1971.
THEIN WAH, R. LEE, CALCOTE, Structura analysis by finite difference calculus, Van Nestraud Reinkold Company, 1970.
M. KWIECIŃSKI, M. KLEIBER, Limit of polar grids treated as plane fibrous bodies, Arch. Inż. Lad., 17, 2, 1971.
M. KWIECIŃSKI, M. KLBIBER, A minimum weight design of grids, Arch. Inż. Lad., 18, 2, 1972.