Engineering Transactions, 62, 4, pp. 355–380, 2014
10.24423/engtrans.240.2014

Large Deformation Constitutive Theory for a Two-Phase Shape Memory Alloy

Vassilis P. PANOSKALTSIS
Demokritos University of Thrace, Xanthi
Greece

Lazaros C. POLYMENAKOS
Autonomic & Grid Computing, Athens Information Technology, Peania
Greece

Dimitris SOLDATOS
Demokritos University of Thrace, Xanthi
Greece

In this work we examine significant theoretical issues related to the constitutive modelling of a two-phase shape memory alloy which undergoes large deformations. For this purpose, we propose a new generalized plasticity based model. The model is based on a standard fractions approach and considers a local multiplicative decomposition of the deformation gradient into elastic and inelastic (transformation induced) parts, as its basic kinematic assumption. We also assess the ability of the model in simulating several patterns of the complex behavior of the material in question, by three representative numerical examples. These examples comprise a standard uniaxial tension problem, a torsion problem and an additional problem dealing with non-conventional pseudoelastic response.
Keywords: two-phase shape memory alloy; martensitic transformations; pseudoelasticity; shape memory effect; generalized plasticity; finite deformations.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

Abeyaratne R., Bhattacharya K., Knowles J.K., Strain-energy functions with multiple local minima: modeling phase transformations using finite thermoelasticity, [in:] Nonlinear Elasticity: Theory and applications, Y. Fu, R.W. Ogden [Eds.], Cambridge Univ.Press, 433–490, 2001.

Ball J.M., James R.D., Fine phase mixtures and minimizers of energy, Arch. RationalMech. Anal., 100, 13–52, 1987.

Ho K., Harmon N.B., First principle total energy calculations applied to displacive transformations, Mater. Sci. Eng., Structural Materials Properties and Processing, 127, 155–165, 1990.

Falk F., Konopka P., Three-dimensional Landau theory describing the martensitic phasetransformation of shape memory alloys, J. Phys. Condens. Matter., 2, 61–77, 1990.

Lindgard P.A., Theory and modeling of the martensitic transformation, J. Phys. IV C4,3–12, 1991.

Artemev A., Wang Y., Khachaturyan A., Three-dimensional phase field model andsimulation of martensitic transformation in multilayer systems under applied stresses,Acta Mater., 48, 2503–2518, 2000.

Levitas V.I., Preston D.L., Thermomechanical lattice instability and phase field theoryof martensitic phase transformations, twinning and dislocations at large strains, PhysicsLetters A, 343, 32–39, 2005.

Arndt M., Griebel M., Nova’c V., Rubi’ˇcek T., ˇSittner P., Martensitic transformation in NiMnGa single crystals: Numerical simulation and experiments, Int. J. Plasticity,22, 1943–1961, 2006.

Tanaka K., Iwasaki A., A phenomenological theory of transformation superelasticity,Eng. Fract. Mech., 21, 709–720, 1985.

Liang C., Rogers C.A., One-dimensional thermomechanical constitutive relations forshape memory materials, J. Intell. Mater. Systems Struct., 1, 207–234, 1990.

Raniecki B., Lexcellent C., Tanaka K., Thermodynamic models of pseudoelasticbehavior of shape memory alloys, Arch. Mech., 44, 261–284, 1992.

Boyd J.G., Lagoudas D.C., Thermomechanical response of shape memory alloy composites, J. Intell. Mater. Systems Struct., 5, 333–346, 1994.

Ivshin Y., Pence T., A thermodynamical model for a one variant shape memory material,J. Intell. Mater. Systems Struct., 5, 455–473, 1994.

Raniecki B., Lexcellent C., Thermodynamics of isotropic pseudoelasticity in shapememory alloys, Eur. J. Mech. A. Solids, 17, 2, 185–205, 1998.

Lagoudas C.D., Entchev P.B., Modeling of transformation-induced plasticity and itseffect on the behavior of porous shape memory alloys. Part I: constitutive model for fullydense SMAs, Mech. Matls., 36, 865–892, 2004.

Zaki W., Moumni Z., A three-dimensional model of the thermomechanical behavior ofshape memory alloys, J. Mech. Phys. Solids, 55, 2455–2490, 2007.

Christ D., Reese S., A finite element model for shape-memory alloys considering thermomechanical couplings at large strains, Int. J. Solids Struct., 46, 3694–3709, 2009.

Thamburaja P., A finite-deformation-based theory for shape-memory alloys, Int. J. Plasticity, 26, 1195–1219, 2010.

Lu Z.K., Weng G.J., Martensitic transformation and stress-strain relations of shapememory alloys, J. Mech. Phys. Solids, 45, 1905–1921, 1997.

Thamburaja P., Anand L., Polycrystalline shape ,- memory materials: effect of crystallographic texture, J. Mech. Phys. Solids, 49, 709–737, 2000.

Anand L., Gurtin M.E., Thermal effects in the superelasticity of crystalline shape –memory materials, J. Mech. Phys. Solids, 51, 1015–1058, 2003.

Lubliner J., Auricchio F., Generalized plasticity and shape memory alloys, Int. J. SolidsStruc., 33, 991–1004, 1996.

Panoskaltsis V.P., Bahuguna S., Soldatos D., On the thermomechanical modelingof shape memory alloys, Int. J. Non-Linear Mech., 39, 709–722, 2004.

Saint-Sulpice L., Arbab Chirani C., Calloch S., A 3D super-elastic model for shapememory alloys taking into account progressive strain under cyclic loadings, Mech. Matls.,41, 12–26, 2009.

Kan Q., Kang G., Constitutive model for triaxial transformation ratcheting of superelastic NiTi shape memory alloy at room temperature, Int. J. Plast., 26, 441–465, 2010.

Panoskaltsis V.P., Soldatos D., Triantafyllou S.P., Generalized plasticity theoryfor phase transformations, 11th International Conference on the mechanical behavior ofmaterials, M. Guagliano [Ed.], CICM 11, Milano, Italy, 5–9 June 2011, Procedia Engineering 3104–3108, 2011.

Panoskaltsis V.P., Polymenakos L.C., Soldatos D., The concept of physical metric in the thermomechanical modeling of phase transformations with emphasis on shapememory alloy materials, ASME J. Eng. Mater. Technol., 135, 2, 021016 (Apr. 02, 2013)doi:10.1115/1.4023780, 2013.

Lubliner J., A maximum – dissipation principle in generalized plasticity, Acta Mech.,52, 225–237, 1984.

Lubliner J., Non-isothermal generalized plasticity, [in:] Thermomechanical Couplings inSolids, H.D. Bui, Q.S. Nyugen [Eds.], 121–133, 1987.

Auricchio F., Taylor R.L., Shape memory alloys: modeling and numerical simulationsof the finite strain superelastic behavior, Computer Meth. Appl. Mech. Engrg., 143, 175–194, 1997.

Arghavani J., Auricchio F., Naghdabadi R., Reali A., Sohrabpour S., A 3D finitestrain phenomenological constitutive model for shape memory alloys considering martensite reorientation, Contin. Mech. Thermodyn., 22, 345–3623, 2010.

Panoskaltsis V.P., Polymenakos L.C., Soldatos D., On large deformation generalized plasticity, J. Mech. Matls Struct., 3, 441–457, 2008.

Simo J.C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and multiplicative decomposition Part I: Continuum formulation, Computer MethodsAppl. Mech. Engrg., 66, 199–219, 1988.

Simo J.C., Hughes T.J.R., Computational inelasticity, Springer-Verlag, New York, 1998.

Holzapfel G.A., Nonlinear solid mechanics. A continuum approach for engineering,John Wiley & Sons, West Sussex, England, 2000.

Taillard K., Arbab Chirani S., Calloch S., Lexcellent C., Equivalent transformation strain and its relation with martensite volume fraction for isotropic and anisotropicshape memory alloys, Mech. Matls., 40, 151–170, 2008.

Likhachev A.A., Koval Y.N., On the differential equation describing the hysterisisbehavior of shape memory alloys, Scrpt. Metal. Mater., 27, 223–227, 1992.

Needleman A., Finite elements for finite strain plasticity problems. Plasticity of Metalsat Finite Strains: Theory, Computations and Experiment, E.H. Lee, R.L. Mallet [Eds.],Division of Applied Mechanics, Stanford University, Stanford, California, 387–436, 1982.LARGE DEFORMATION CONSTITUTIVE THEORY. . . 37939. Orgeas L., Favier D., Stress induced martensitic transformation of a Ni-Ti alloy inisothermal shear, tension, compression, Acta Mater., 46, 5579–5591, 1998.

Vacher P., Lexcellent C., Study of pseudoelastic behavior of polycrystalline SMA by resistivity measurements and acoustic emission, [in:] Proc. of ICM 6, Kyoto Japan, M. Jono,T. Inoue [Eds.], 231–236, 1991.

Lexcellent C., Laydi R.M., About the choice of a plastic-like model for shape memoryalloys, Vietnam J. Mech., VAST, 4, 283–291, 2011.

Perzyna P., On the thermomechanical foundations of viscoplasticity, [in:] Mechanicalbehavior of materials under dynamic loads, Lindolm U.S. [Ed.], Springer-Verlag, WienNew York, 61–76, 1968.

Nemat-Nasser S., Choi J.Y., Guo W.-G., Isaacs J.B., Taya M., High Strain-rate,small strain response of a NiTi shape-memory alloy, J. Eng. Mater. Technol., 127, 83–89,2005.

Grabe C., Bruhns O.T., On the viscous and strain rate dependent behavior of polycrystalline NiTi, Int. J. of Solids and Struct., 45, 1876–1895, 2008.

Panoskaltsis V.P., Polymenakos L.C., Soldatos D., A finite strain model of combined viscoplasticity and rate-independent plasticity without a yield surface, Acta Mech.,224, 2107–2125, 2013.

Lagoudas D.C., Bo Z., Qidwai M.A., A unified thermodynamic constitutive model forSMA and finite element analysis of an active metal matrix composites, Mech. Compos.Mater. Struct., 3, 153–179, 1996.

Wolff M., Boettcher S., B¨ohm M., Phase transformations in steel in the multiphase case – general modeling and parameter identification, Report 07-02, Zentrum f¨urTechnomathematic, Universit¨at Bremen, 2007.

Koistinen D.P., Marburger R.E., A general equation prescribing the extent of theaustenite-martensite transformation in pure iron-carbon alloys and plain carbon steels,Acta Metall., 7, 59–60, 1959.

Mahnken R., Schneidt A., Antretter T., Macro modeling and homogenization fortransformation induced plasticity of a low-alloy steel, Int. J. Plast., 25, 183–204, 2009.

Voyiadjis G.Z., Abu Al-Rub R.K., Palazotto A., Non-local coupling of viscoplasticityand anisotropic viscodamage for impact problems using the gradient theory, Arch. Mech.,55, 39–89, 2003.

Voyiadjis G.Z., Deliktas B., A coupled anisotropic damage model for the inelasticresponse of composite materials, Computer Meth. Appl. Mech. Engrg., 183, 159–199,2000.

Meyers A., Xiao H., Bruhns O., Elastic stress ratcheting and corotational stress rates,Technische Mechanic, 23, 92–102, 2003.

Tran H., Balandraud X., Destrebeck J.-F., Recovery stresses in SMA wires for civilengineering applications: experimental analysis and thermomechanical modeling, Mat.wiss.u.Werkstofftech., 42, 435–443, 2011.

Panoskaltsis V.P., Mechanics of shape memory alloy materials – Constitutive modelingand numerical implications, 131–166, Intech Publications, 2013.

Panoskaltsis V.P., Soldatos D., Triantafyllou S.P., On phase transformations inshape memory alloy materials and large deformation generalized plasticity, ContinuumMech. Thermodyn., 26, 811–831, Published on line: 16 March 2014, DOI 10.1007/s00161013-0312-y.

Panoskaltsis V.P., Soldatos D., Triantafyllou S.P., A new model for shape memory alloy materials under general states of deformation and temperature conditions, [in:]Proceedings of the 7th GRACM International Congress on Computational Mechanics,Boudouvis A.G., Stavroulakis G.E. [Eds.], Athens, Greece, 30 June – 2 July 2011.




DOI: 10.24423/engtrans.240.2014