Engineering Transactions, 22, 1, pp. 55-68, 1974

Optymalizacja Kształtu Pręta Smukłego Umieszczonego w Strumieniu Płynu

B. Drąg
Politechnika Krakowska

A. Gajewski
Politechnika Krakowska

The rod is replaced by a model with a two degrees of freedom (Ziegler model) in order to solve the problem of optimization of the form of a rod placed in parallel fluid flow and subjected to simultaneous action of lateral and axial pressures (during the motion). The lateral pressure is assumed to be given by a very simple flow rule (piston rule), and the axial force changes its orientation within the entire range of the tracking coefficient. Using both the static and kinematic stability criteria, the stability defined volume of the Ziegler model is minimized at a given critical velocity of the fluid. The solution derived is accurate for the model, and represents only an approximation for the actual rod; however, it may serve as a general information on the character of optimal rod forms in fluid flows.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).


M. BECK, Die Knicklast des einseitig eingespannten tangential gedriickten Stabes, ZAMP, 3, 3 (1952), 225-228.

A. GAJEWSKI, Stateczność niepryzmatycznych prętów w strumieniu płynu, Mech. Teor. i Stos., 7, 3, 311-321, 1969.

A. GAJEWSKI, Pewne problemy optymalizacji kształtu prętów przy niekonserwatywnych zagadnienia stateczności, Prace Komisji Mechaniki Stosowanej PAN, Mechanika z. 4 (1970), 3-27.

A. GAJEWSKI, M. ŻYCZKOWSKI, An optimal forming of a bar compressed with subtangential force in elastic-plastic range, Arch. Mech. Stos., 23, 2, 147-165, 1971.

Z. KORDAS, M. ŻYCZKOWSKI, On the loss of stability of a rod under a super-tangential force Arch. Mech. Stos., 15, 1, 7-31, 1963.

Z. KORDAS, Stateczność pręta opływanego równoległym strumieniem płynu przy uwzględnieniu oporu czołowego, Rozpr. lnżyn., 13, 1, 19-41, 1965.

A. KOWALSKI, Stateczność prętów o skokowo zmiennym przekroju ściskanych silą śledzącą, Rozpr. Inżyn., 15, 2, 197-209, 1967.

M. LEVINSON, Application of the Galerkin and Ritz medhods to nonconservative problems of elastic stability, ZAMP, 17, 3, 431-442, 1966.

L. LIBRESCU, L. BEINER, On the weight optimization problem Jor supersonic rectangular fiat panels with specified flutter speed, Rev. roum. sci. techn., Serie mec. appl., 17, 5, 1087-1102, 1972.

R. H. PLAUT, On the optimal structural design for a nonconservative elastic stability problem, Journal of Optimization Theory and Applications, 7, 1, 52-60, 1971.

A. T. WEISSHAAR, Aeroelastic optimization of a panel in high Mach number supersonic flow, J. Aircraft, 9, 9, 611--617 (1972).

M. ŻYCZKOWSKI, A. GAJEWSKI, Optimal structural design in non-conservative problems of elastic stability, Instability of Continuous Systems, IUTAM Symposium, Herrenalb, 1969, Springer-Verlag, 295-301, 1971.