10.24423/engtrans.204.2008
Constitutive Modelling and Parameter Identification for Rubber-Like Materials
References
J. Lambert-Diani, C. Rey, New phenomenological behaviour laws for rubbers and thermoplastic elastomers, Eur. J. Mech. A/Solids, 18, 1027–1043, 1999.
K. Farahani, H. Bahai, Hyper-elastic constitutive equations of conjugate stresses and strain tensors for the Seth-Hill strain measures, I. J. Eng. Science, 42, 29–41, 2004.
L. Anand, A constitutive model for compressible elastomeric solids, Computational Mechanics, 18, 339–355, 1996.
MSC. Marc Volume A: Theory and User Information, Chapter 7 Material Library, Elastomer, 7-50-7-60.
Z. Guo, L. J. Sluys, Application of a new constitutive model for the description of rubber-like materials under monotonic loading, Int. J. of Solids and Structures, 43, 2799–2819, 2006.
R. W. Ogden, Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond., A 326, 565–584, 1972.
R. W. Ogden, Large deformation isotropic elasticity – on the correlation of theory and experiment for compressible rubberlike solids, Proc. R. Soc. Lond., A 328, 567–583, 1972.
R. W. Ogden, Elastic deformations of rubberlike solids, H.G. Hopkins and M.J. Sewell [Eds.], The Rodney Hill 60th Anniversary Volume (Pergamon, Oxford, UK 328, 499–537, 1982.
J. Simo, R. L. Taylor, Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms, Comp. Meth. in Appl. Mech. and Eng., 85, 273–310, 1991.
E. M. Arruda and M. C. Boyce, A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials, J. Mech. Phys. Solids, 41, 389–412, 1993.
E. A. De Souza Neto, D. Perić and D. R. J. Owen, A phenomenological threedimensional rate-independent continuum damage model for highly filled polymers: formulation and computational aspects, J. Mech. Physics of Solids, 42, 1533–1550, 1994.
C. O. Horgan, R. W. Ogden and G. Saccomandi, A theory of stress softening of elastomers based on finite chain extensibility, Proc. R. Soc. Lond., A 460, 1737–1754, 2004.
D. De Tommasi, G. Puglisi and G. Saccomandi, A micromechanics-based model for the Mullins effect, J. Rheol., 50, 495–512, 2006.
M. M. Attard and G. W. Hunt, Hyperelastic constitutive modeling under finite strain, I. J. Solids and Structures, 41, 5327–5350, 2004.
M. A. Johnson and M. F. Beatty, The Mullins effect in equibiaxial extension and its influence on the inflation of a balloon, I. J. Eng. Science, 33, 223–245, 1995.
M. F. Beatty and S. Krishnaswamy, A theory of stress-softening in incompressible isotropic materials, J. Mech. Physics of Solids, 48, 1931–1965, 2000.
A. Elias-Zúñiga and M. F. Beatty, A new phenomenological model for stress-softening in elastomers, ZAMP, 53, 794–814, 2002.
A. Elias-Zúñiga, A phenomenological energy-based model to characterize stress-softening effect in elastomers, Polymer, 46, 3496–3506, 2005.
R. W. Ogden and D. G. Roxburgh, A pseudo-elastic model for the Mullins effect in filled rubber, Proc. R. Soc. London, A 455, 2861–2678, 1999.
A. Kwiecień, B. Zając, Wyniki testów rozciągania, ściskania i ścinania materiału ICOSIT, Raport KBN (in Polish), Kraków 2006.
A. Kwiecień, J. Kubica, P. Stecz, B. Zając, Flexible joint method (FJM) – A new approach to protection and repair of cracked masonry, First European Conference on Earthquake Engineering and Seismology (a joint event of the 13th ECEE & 30th General Assembly of the ESC), Geneva, Switzerland, 3–8 September 2006, Paper Number: 282.
J. C. Simo, On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects, Comput. Methods Appl. Mech. Eng., 60, 153–173, 1987.
S. Govindjee, J. C. Simo, A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins’ effect, Journal of the Mechanics and Physics of Solids, 39 (1), 87–112, 1991.
L. Mullins, N. R. Tobin, Theoretical model for the elastic behaviour of filler-reinforced vulcanized rubbers, [in:] Proceedings of the Third Rubber Technology Conference, London 1954 (Published in 1956), 397–412, 1956.
L. Mullins, Effect of stretching on the properties of rubber, Journal of Rubber Research, 16 (12), 275–289, 1947.
L. Mullins, Softening of rubber by deformation, Rubber Chemistry and Technology, 42 (1), 339–362, 1969.
C. Miehe, Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials, Eur. J. Mech. A/Solids, 14, 697–720, 1995.
C. Miehe, S. Göktepe, F. Lulei, A micro-macro approach to rubber-like materials –Part I: the non-affine micro-sphere model of rubber elasticity, Journal of the Mechanics and Physics of Solids, 52, 2617–2660, 2004.
C. Miehe, S. Göktepe, A micro-macro approach to rubber-like materials. Part II: The micro-sphere model of finite rubber viscoelasticity, Journal of the Mechanics and Physics of Solids, 52, 2231–2258, 2005.
S. Göktepe, C. Miehe, A micro-macro approach to rubber-like materials. Part III: The micro-sphere model of anisotropic Mullins-type damage, Journal of the Mechanics and Physics of Solids, 53, 2259–2283, 2005.
S. Krishnaswamy, M. F. Beatty, The Mullins effect in compressible solids, Int. J. of Eng. Science, 38, 1397–1414, 2000.
B. Meissner, L. Matejka, A structure-based constitutive equation for filler-reinforced rubber-like networks and for the description of the Mullins effect, Polymer, 47, 7997–8012, 2006.
G. Heinrich, M. Kaliske, Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity, Comput. Theor. Polym. Sci., 7 (3/4), 227–241, 1997.
R. W. Ogden, G. Saccomandi, I. Sgura, Fitting hyperelastic models to experimental data, Computational Mechanics, 34 (6), 484–502, 2004.
R. Kazakeviciute-Makovska, Experimentally determined properties of softening functions in pseudo-elastic models of the Mullins effect, International Journal of Solids and Structures, 44, 4145–4157, 2007.
C. O. Horgan, J. G. Murphy, Plane strain bending of cylindrical sectors of admissible compressible hyperelastic materials, Journal of Elasticity, 81(2), 129–151, 2005.
Z. P. Huang, J. Wang, A theory of hyperelasticity of multi-phase media with surface/interface energy effect, Acta Mechanica, 182 (3–4), 195–210. 2006.
C. O. Horgan, J. G. Murphy, Invariance of the equilibrium equations of finite elasticity for compressible materials, Journal of Elasticity, 77 (3), 187–200, 2004.
A. DeSimone, J. J. Marigo and L. Teresi, A damage-mechanics approach to stress softening and its application to rubber, Eur. J. Mech. A, 20, 873–892, 2001.
A. Lion, A constitutive model for carbon-black-filled rubber: experimental investigations and mathematical representation, Continuum Mech. Thermodyn., 8, 153–169, 1996.
E. G. Septanika, L. J. Ernst, Application of the network alteration theory for modeling the time-dependent constitutive behaviour of rubbers, Part I., Mech. Mater., 30, 253–263, 1998.
F. Andrieux and K. Saanouni, On a damaged hyperelastic medium: Mullins effect with irreversible strain, Int. J. Damage Mech., 8, 82–103, 1999.
G. Marckmann, E. Verron, L. Gornet, G. Chagnon, P. Charrier and P. Fort, A theory of network alteration for the Mullins effect, J. Mech. Phys. Solids, 50, 2011–2028, 2002.
C. O. Horgan, G. Saccomandi, A molecular-statistical basis for the Gent constitutive model of rubber elasticity, J. Elasticity, 68, 167-176, 2002.
H. J. Qi and M. C. Boyce, Stress-strain behaviour of thermoplastic polyurethanes, Mechanics of Materials, 37, 817–839, 2005.
P. Król, Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers, Progress in Materials Science, 52, 915–1015, 2007.
C. Miehe, J. Keck, Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation, J. Mech. Phys. Solids, 48, 323–365, 2000.
G. Pompe, A. Pohlers, P. Pötschke, J. Piontec, Influence of processing conditions on the multiphase structure of segmented polyurethane, Polymer, 39, 5147, 1998. (280)
W. Kuran, M. Sobczak, T. Listos, C. Debek, Z. Florjanczyk, New route to oligocarbonate diols suitable for the synthesis of polyurethane elastomers, Polymer, 41 (24), 8531–8541, 2000. (42)
M. Herrera, G. Matuschek, A. Kettrup, Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI, Polymer Degradation and Stability, 78 (2), 2002.
F. Bueche, Molecular basis for the Mullins effect, Journal of Applied Polymer Science, 4 (10), 107–114, 1960.
L. R. G. Treloar, Stress–strain data for vulcanised rubber under various types of deformation, Trans. Faraday Soc., 40, 59–70, 1944.
H. M. James and E. Guth, Theory of the increase in rigidity of rubber during cure, J. Chem. Phys., 15, 669–683, 1947.
L. R. G. Treloar and G. Riding, A Non-Gaussian theory for rubber in biaxial strain. I. Mechanical properties, Proc. Roy. Soc. London A, 369, 261–280, 1979.
H. M. Arruda and M. C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids, 41, 389–412, 1993.
P. D. Wu and E. van der Giessen, On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers, J. Mech. Phys. Solids, 41, 427–456, 1993.
M. C. Boyce and E. M. Arruda, Constitutive models of rubber elasticity: a review, Rubber Chem. Technol., 73, 505–523, 2000.
A. N. Gent, A new constitutive relation for rubber, Rubber Chem. Technol., 69, 59–61, 1996.
J. Lemaitre, J. L. Chaboche, Mechanics of Solid Materials, Springer-Verlag, Berlin, 1987.
DOI: 10.24423/engtrans.204.2008