Engineering Transactions, 32, 2, pp. 275-287, 1984

Problem of the Decohesive Carrying Capacity of a Cylindrical Shell Under a Ring of Forces and Tension

Tran-Le Bihn
Technical University, Hai Phong
Viet Nam

M. Życzkowski
Technical University of Kraków, Kraków
Poland

Termination of the process of elastic-plastic deformations of a sandwich cylindrical shell under a simultaneous ring of radial forces and axial tension is studied in detail. The materiał is assumed to be perfectly elastic-plastic, incompressible and subject to the Huber-Mises-Hencky yield con­dition. The decohesive carrying capacity is in this case determined by an infinite increase of axial strains ex in the outer layer at the point x=O. The relevant singularity is described by generalized power series and, using those series combined with numerical integration, a concave interaction curve corresponding to the decohesive carrying capacity is determined.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

P. KLEMENT, Theorie der elastisch plastichen Zylinderschale, Osterr. Ing. Archiv., 16, 3, 199-211, 1962.

J. A. KONIG, Deformations of cylindrical elastic plastic shells, Bull. Acad. Polon, Sci., serie Sci. Techn., 12, l, 13-20, 1964.

H. F. MUENSTERER, F. P. J. RIMROTT, Elastic-plastic response of a sandwich cylinder subjected to internal pressure, J. Strain Anal., 6, 4, 273-278., 1971.

Y. OHASHI, T, OKOUCHI, The elasto-plastic deformation of a supported short cylindrical shell of mild steel under internal pressure, Int. J. Mech. Sci., 17, 4, 267-282, 1975.

Y. OHASHI, T. OKOUCHI, Precise analysis of elastic plastic deformation of thin-walled cylindrical shell with clamped ends under internal pressure, Z. angew. Math. Mech., 60, 691-702, 1980.

YU. N. RABOTNOV, An approximate engineering theory of elastic-plastic shells [in Russian], PrikI. Mat. Mekh., 15, 2, 167-174, 1951.

A. R. RZHANITSYN, Analysis of shells to the limit equilibrium method [in Russian], Issl. po Vopr. Teorii Plast. Prochu., CNIISK, 7-35, Moskva 1958.

M. SAYIR, Die rotationssymmetrische dunne Zylinderschale aus idealplastischem Material, Z. angew. Math. Physik, 19, 2, 185-219, 1968.

N. A. SHOEB, W. C. SCHNOBRICH, Elastic-plastic analysis of cylindrical shells, Proc. ASCE, J. Eng. Mech. Div., 98, 1, 47-59., 1972.

J. SKRZYPEK, M. ŻYCZKOWSKI, Termination of processes of finite plastic deformations of incomplete toroidal shells, Sol. Mech. Arch., 8, 1, 39-98, 1983.

K. SZUWALSKI, Decohesive carrying capacity of bar systems made of an asymptotically perfectly plastic material, Bull. Acad. Polon. Sci., Serie Sci. Techn., 28, 105-112, 207-214, 1980.

K. SZUWALSKI, Nośność rozdzielcza pierścieniowej tarczy kołowo symetrycznej ze sztywną inkluzją, Mech. Teor. Stos., 17, 4, 589-602, 1979.

K. SZUWALSKI, Wpływ charakterystyk materiałowych na nośność rozdzielczą tarczy nieograniczonej z kołową sztywną inkluzją [in print].

K. SZUWALSKI, TRAN LE BINH, Nośność rozdzielcza idealnie sprężysto plastycznych belek statycznie niewyznaczalnych, Czas. Techn., 81, 4, 10-15, 1977.

K. SZUWALSKI, M. ŻYCZKOWSKI, On the phenoment of decohesion in perfect plasticity, Int. J. Solids Struct., 9, 1, 85-98, 1973.

K. SZUWALSKI, M. ŻYCZKOWSKI, A concave interaction curve corresponding to decohesive carrying capacity under thermal loadings, J. Thermal Stresses [7, 1, 1984].

TRAN LE BINH, M. ŻYCZKOWSKI, The Stussi-Kollbrunner paradox in the light of the concept of decohesive carrying capacity, Arch. Mech. Stos., 28, 4, 607-614, 1976.

A. UBAYDILLAYEV, Elastic plastic deformations of a cylindrical shell [in Russian], Voprosy Vychisl. Prikl. Matem. (Tashkent), 39, 147-157, 1976.

A. UBAYDILLAYEV, Combined loading of a finite cylindrical shell [in Russian], Voprosy Vychisl. PrikI. Matem. (Tashkent), 40, 119-128, 1976.

M. ŻYCZKOWSKI, K. SZUWALSKI, On the termination of the process of finite plastic deformations, J. Mecanique Theor. Appl., Numero Special, 175-186, 1982.