10.24423/engtrans.150.2011
Correlation Between Dynamic Material Behavior and Adiabatic Shear Phenomenon for Quenched and Tempered Steels
References
H. Tresca, Sur la fluideite et lécoulement des corps solides, Annales du conservatoire des arts et metiers, 41, XI 1er fasc., 153–160, 1879.
C. Zener, J. H. Hollomon, Effect of strain rate upon plastic flow of steel, Journal of Applied Physics, 15, 22–32, 1944.
H. C. Rogers, Adiabatic shearing-general nature and material aspects, Material behavior under high stress and ultra-high loadings rates, 29th Sagamore Army Materials Conf., J. Mescall and V. Weiss [Eds.], Plenum Press New York, Drexel University, Department of materials engineering, 101–118, 1983.
R. Dormeval, The adiabatic shear phenomenon, Materials at high strain rates, Elsevier Applied Science, T.Z. Blazynski [Ed.], 47–69, 1987.
Y. Xu, J. Zhag, Y. Bai, M. A. Meyers, Shear localization in dynamic deformation: micro- structural evolution, Metallurgical and Materials Transactions A, 39A, 811–843, 2008.
R. Dormeval, The adiabatic shear phenomena, Impact loading and dynamic behavior of materials, Vol. 1, C. Y. Chiem, H. D. Kunze, L. W. Meyer [Eds.], DGM Informationsgesellschaft, Verlag, 43–56, 1988.
X. B. Wang, Adiabatic shear localization for steels based on Johnson-Cook-Model and second- and fourth-order gradient plasticity models, Journal of Iron and Steel Research, International, 14, 56–61, 2007.
T. Pintat, B. Scholz, H. D. Kunze, O. Vöhringer, The influence of carbon content and grain size on energy consumption during adiabatic shearing, Journal de Physique, C3, 9, 49, 237–244, 1988.
M. Edwards, Properties of metals at high rates of strain, Materials Science and Technology, 22, 4, 453–462, 2006.
J. F. Mescall, On the relative roles of strain-hardening and thermal softening in ASB, Mechanical Engineering, Metallurgical application of shock-wave and high-strain-rate phenomena, 52, 689–704, 1986.
J. Barry, G. Byrne, Chip formation, acoustic emission and surface white layers in hard machining, Annals of the CIRP, 51, 65–70, 2002.
A. J. Bedford, A. L. Wingrove, K. R. L. Thompson, The phenomenon of adiabatic shear deformation, Journal of the Australian Institute of Metals, 19, 1, 61–73, 1974.
Y. Meunier, R. Rouy, J. Moureaud, Survey of adiabatic shear phenomena in armor steels with perforation, Shock-wave and high strain rate phenomena in metals, 637–644, 1992.
A. G. Odeshi, S. Al-Ameeri, M. N. Bassim, Effect of high strain rate on plastic deformation of a low alloy steel subjected to ballistic impact, Journal of Materials Processing Technology, 162–163, 385–391, 2005.
J. M. Yellup, R. L. Woodward, Investigaion into the prevention of adiabatic shear failure in high strength armour materials, Res. Mechanica, 1, 41–57, 1980.
P. R. Guduru, A. J. Rosakis, G. Ravichandrian, Dynamic shear bands: an investigation using high speed optical and infrared diagnostics, Mechanics of Materials, 33, 371–402, 2001.
A. Sabih, A. M. Elwazri, J. A. Nemes, S. Yue, A workability criterion for the transformed ASB phenomena during cold heading of 1038 steel, Journal of Failure and Prevention, 6, 97–105, 2006.
N. Herzig, Erfassung und Beschreibung des skalierten Fließ-, Verfestigungs- und Versagensverhalten ausgewählter metallischer Werkstoffe, Dissertation, Schriftenreihe Band 004 Werkstoffverhalten, TU Chemnitz, Professur Werkstoffe des MB, 2008.
Z. G. Wang, G. Rittel, Thermomechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys, Mechanics of Materials, 40, 8, 629–635, 2008.
Y. Bai, B. Dodd, Adiabatic shear localization; Occurrence, theories and applications, Pergamon press, Oxford, 1992.
E. Hanina, D. Rittel, Z. Rosenberg, Pressure sensitivity of adiabatic shear banding in metals, Applied physics letters, American institute of physics, 90, 021915-1–021915-4, 2007.
R. S. Culver, Thermal instability strain in dynamic plastic deformation, Metallurgical effects at high strain rates, 519–529, 1973.
R. F. Recht, Catastrophic thermoplastic shear, Journal of Applied Materials, Transactions of the ASME, 189–193, 1964.
H. C. Rogers, Adiabatic plastic deformation, Ann. Rev. Mater. Sci., 9, 283–311, 1979.
M. A. Meyers, Dynamic behavior of materials, Wiley-Interscience Publication; John Wiley and Sons, Inc., New York, 1994.
R. J. Clifton, Material Response to ultra-high loadings rates, Rep. NMAB - 356, NMAB, NAS, Washington, DC, Ch. 8, 1979.
T. W. Wright, The physics and mathematics of ASB, Cambridge University Press, 2002.
M. A. Meyers et al., Microstructural evolution in adiabatic shear localization in stainless steel, Acta Materialia, 51, 1307–1325, 2003.
M. R. Staker, The relation between adiabatic shear instability strain and material properties, Acta Metallurgica, 29, 683–689, 1981.
J. R. Klepaczko, Remarks on impact shearing, Journal of Mechanics, Physics and Solids, 46, 10, 2139–2153, 1998.
L. L. Wang, H. S. Bao, W. X. Lu, The dependence of ASB in strain-rate, strain and temperature, Journal de Physique, C3, 3, 49, 207–214, 1988.
D. E. Grady, Dissipation in adiabatic shear bands, Mechanics of Materials, 17, 289–293, 1994.
L. W. Meyer, L. Krüger, Shear testing with hat specimen, ASM Handbook, Mechanical Testing and Evaluation, ASM International, Materials Park, Ohio, 8, 451–452, 2000.
J. F. Kalthoff, Modes of dynamic shear failure in solids, International Journal of Fracture, 101, 1–31, 2000.
L. W. Meyer, L. Krüger, S. Abdel–Malek, Adiabatische Schervorgänge, Materialprüfung, 41, 31–35, 1999.
L. W. Meyer, E. Staskewitsch, A. Burblies, Adiabatic shear failure under biaxial dynamic compression/shear loading, Mechanics of Materials, 17, 203–214, 1994.
L. W. Meyer, L. Krüger, Drop-weight compression shear testing, ASM Handbook, Mechanical Testing and Evaluation, ASM International, Materials Park, Ohio, 8, 452–454, 2000.
X. Sun, W. Liu, W. Chen, D. Templeton, Modeling and characterization of dynamic failure of borosilicate glass under compression/shear loading, Int. Journal of Impact Engineering, 36, 226–234, 2009.
L. W. Meyer, E. Staskewitsch, Adiabatic shear failure of the titanium alloy Ti6Al4V under biaxial dynamic compression/shear loading, Shock Waves and high-strain-rate phenomena in metals, 1939–1946, 1992.
K. H. Hartmann, H. D. Kunze, L. W. Meyer, Metallurgical effects on impact loaded materials, Shock waves and high strain rate phenomena in metals, concepts and applications, Plenum Press New York, 325–337, 1981.
J. R. Klepaczko, B. Rezaig, A numerical study of ASB in mild steel by dislocation mechanics based constitutive relations, Mechanics of Materials, 24, 125–139, 1996.
H. Feng, M. N. Bassim, Finite element modeling of the formation of ASB in AISI 4340 steel, Material Science and Engineering, A266, 255–260, 1999.
L. W. Meyer, S. Manwaring, Critical adiabatic shear strength of low alloyed steel under compressive load, Metallurgical applications of shock-wave and high-strain-rate phenomena, 657–674, 1986.
L. W. Meyer, Adiabatic shear failure at biaxial dynamic compression/shear loading, Euromech, 282, 1991.
S. N. Medyanik, W. K. Liu, S. Li, On criteria for dynamic adiabatic shear band propagation, Journal of the Mechanics and Physics of Solids, 55, 1439–1461, 2007.
L. E. Murr, Applications of extreme deformation, Materials Technology, 22, 4, 193–199, 2007.
DOI: 10.24423/engtrans.150.2011