Engineering Transactions, 0, 0, pp. , 0

Thermodynamics Analysis of an MHD Casson Fluid Flow Through a Rotating Permeable Channel with Slip and Hall Effects

Adetayo Samuel EEGUNJOBI
Namibia University of Science and Technology

Oluwole Daniel MAKINDE
Stellenbosch University
South Africa

In this paper, the inherent irreversibility in a Casson fluid flow through a rotating permeable microchannel with wall slip and Hall current is investigated. It is assumed that the lower wall is subjected to the velocity slip and fluid injection while the fluid suction occurs at the upper wall. The nonlinear governing equations of momentum and energy balance are obtained, analyzed and solved numerically using the shooting technique together with the Runge-Kutta-Fehlberg integration method. Pertinent results depicting the effects of various embedded thermophysical parameters on the fluid velocity, temperature, skin friction, the Nusselt number, entropy generation rate and the Bejan number are presented graphically and discussed. It is found that the entropy generation rate is enhanced by fluid rotation and velocity slip but lessened with a rise magnetic field intensity. Our results will undoubtedly augment the design and efficient operation of micro-cooling devices, micro-heat exchangers, micropumps and micro-mixing technologies.
Keywords: MHD; Casson fluid; rotating flow; permeable channel; Hall effects; entropy analysis
Full Text: PDF


Casson N., A flow equation for pigment oil-suspensions of the printing ink type, Rheology of Disperse Systems, C.C. Mill [Ed.], pp. 84–104, Pergamon Press, London, 1959.

Gireesha B.J., Archana M., Prasannakumara B.C., Reddy Gorla R.S., Makinde O.D., MHD three dimensional double-diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a stretching surface, International Journal of Numerical Methods for Heat & Fluid Flow, 27(12): 2858–2878, 2017, doi: 10.1108/HFF-01-2017-0022.

Zaib A., Rashidi M., Chamkha A.J., Bhattacharyya K., Numerical solution of second law analysis for MHD Casson nanofluid past a wedge with activation energy and binary chemical reaction, International Journal of Numerical Methods for Heat & Fluid Flow, 27(12): 2816–2834, 2017, doi: 10.1108/HFF-02-2017-0063.

Gupta S., Sharma K., Numerical simulation for the magnetohydrodynamic three-dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation, Engineering Computations, 34(8): 2698–2722, 2017, doi: 10.1108/EC-02-2017-0064.

Durairaj M., Ramahandran S., Mehdi R.M., Heat generating/absorbing and chemically reacting Casson fluid flow over a vertical cone and flat plate saturated with a non-Darcy porous medium, International Journal of Numerical Methods for Heat & Fluid Flow, 27(1): 156–173, 2017, doi: 10.1108/HFF-08-2015-0318.

Hymavathi T., Sridhar W., Numerical solution to mass transfer in MHD flow of Casson fluid with suction and chemical reaction, International Journal of Chemical Sciences, 14(4): 2183–2197, 2016.

Hussanan A., Salleh M.Z., Khan I., Tahar R.M., Heat transfer in magnetohydrodynamic flow of a Casson fluid with porous medium and Newtonian heating, Journal of Nanofluids, 6(4): 784-793, 2017, doi: 10.1166/jon.2017.1359.

Rawi N.A., Ilias M.R., Lim Y.J., Isa Z.M., Shafie S., Unsteady mixed convection flow of Casson fluid past an inclined stretching sheet in the presence of nanoparticles, Journal of Physics: Conference Series, 890: 012048, 2017, doi: 10.1088/1742-6596/890/1/012048.

Eegunjobi A.S., Makinde O.D., Inherent irreversibility in a variable viscosity Hartmann flow through a rotating permeable channel with Hall effects, Defect and Diffusion Forum, 377: 180–188, 2017, doi: 10.4028/

Singh J.K., Seth G.S., Begum S.G., Unsteady MHD natural convection flow of a rotating viscoelastic fluid over an infinite vertical porous plate due to oscillating freestream, Multidiscipline Modeling in Materials and Structures, 14(2): 236–260, 2018, doi: 10.1108/MMMS-06-2017-0054.

Rashidi M.M., Erfani E., Analytical method for solving steady MHD convective and slip flow due to a rotating disk with viscous dissipation and Ohmic heating, Engineering Computations, 29(6): 562–579, 2012, doi: 10.1108/02644401211246283.

Papa F., Vaidyanathan K., Keith T.G., DeWitt.J., Numerical computations of flow in rotating ducts with strong curvature, International Journal of Numerical Methods for Heat & Fluid Flow, 10(5): 541–557, 2000, doi: 10.1108/09615530010338213.

Arikoglu A., Ozkol I., On the MHD and slip flow over a rotating disk with heat transfer, International Journal of Numerical Methods for Heat & Fluid Flow, 16(2): 172–184, 2006, doi: 10.1108/09615530610644253.

DOI: 10.24423/engtrans.960.20200720

Copyright © 2014 by Institute of Fundamental Technological Research
Polish Academy of Sciences, Warsaw, Poland