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Abstract. An initial stability of Kirchhoff plates supportean boundary and resting on the internal
supports is analysed in the paper. The internabatips understood to be a column and linear
continuous constraints. Proposed approach avoidhkoff forces at the plate corner and equivalent
shear forces at a plate boundary. Two unknown bisaare considered at the boundary element node.
The governing integral equations are derived usletii theorem. The integral equations have the
form of boundary-domain integral equations. Thestant type of boundary element are used. The
singular and non-singular formulation of the bougeidomain integral equations with one and two
collocation points associated with a single boupadement located slightly outside of a plate edge
are presented. To establish a plate curvature lpldodifferentiation of basic boundary-domain
integral equation, a plate domain is divided intatangular sub-domains associated with suitable
collocation points. According to the another apploa plate curvature is also established by
considering three collocation points located irselproximity to each other along line pararel te on

of the two axes of global coordinate system analbdishment of appropriate difference operators.
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1. INTRODUCTION

The Boundary Element Method (BEM) can be appliediohe aspect of engineering analysis of the
structures. Burcaski [1] described in a comprehensive manner thenBaty Element Method and its
application in a variety of fields, the theory dasticity together with the appropriate solutiomsl &
discussion of the basic types of boundary elemerite main advantage of BEM is its relative
simplicity of formulating and solving problems ohet theory of potential and elasticity. The
application of the Boundary Element Method to aeknalysis has the particular advantages. Many
authors used the BEM to solve static, dynamic aitdhi stability problems of thin plates. There are
well known publications of Altiero and Sikarski€),[Bézine and Gamby [3], Stern [4] and Hartmann
and Zotemantel [5] who applied BEM to solve thiatplbending problem. Abdel-Akher and Hartley
[6] presented evaluation of boundary and boundamain integralf of fundamental functions used in
plate analysis. A number of contributions devotedhe analysis of plates were presented by: Debbih
[7, 8], Beskos [9], Wen, Aliabadi and Young [10]JatiKikadelis [11, 12], Katsikadelis and Yotis [13],
Katsikadelis, Sapountzakis and Zorba [14], Katsghizd and Kandilas [15], Katsikadelis and
Sapountzakis [16]. Wrobel and Aliabadi [17] desedban application of BEM in the thick plate
analysis together with procedures for calculatimg@ar and hypersingular integrals in wide aspect.
Very interesting approach was presented by Litearké Sygulski [18, 19] who applied the Ganowicz
[20] fundamental solutions for Reissner platestéticcanalysis of plates. Noteworthy is publicatadn
Shi [21] who applied BEM formulation for vibraticand initial stability problem of orthotropic thin
plates. Ptaszny [22] applied Fast multipole boupgddement method for the analysis of plates with
many holes. Rashed [23] applied the coupled BEMiHikty force method to static analysis of thin
plates resting on internal column supports. Theomdrawback of this approach is the necessary
condition of boundary supports which satisfies kiaéic constraints. In order to simplify the
calculation procedures Guminiak and Sygulski [24]ppsed a modified formulation of the boundary
integral equation for a thin plate. This approacswapplied for static, dynamic and stability anialys
of thin plates and it is presented together withes® numerical examples in papers, e.g. [25-30].
Guminiak [31] applied difference equation modelestablishment of curvatures connected to the

aforementioned modified BEM approach to solve ahistability problem of thin plates providing also
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the wide review of literature devoted to the BEMplagation in plate analysis. Miecki [32, 33]
proposed BEM to static analysis of plane girderd BEM combined with approximate fundamental
solutions for problem of plate bending resting dastic foundation. Author used non-singular
approach of boundary integral equations wherein deevation of the second boundary integral
equation was executed for additional collocatiomgsolocated outside of a plate domain. The same
approach of derivation of boundary integral equati@s applied by Myfecki and Olékiewicz [34,
35] to solve free vibration problem of thin plat€articularly notheworthy is work of Katsikadelis
[36, 37] in which author applied BEM in a wide astseof engineering analysis of plates. In this work
the conception of the Analog Equation Method (AEMvidely presented as the tool that allows fully
overcomes the main drawback of direct BEM whiclinitation only to linear problems. The AEM is
based on the principle of the analog equation dfsikadelis for differential equations [38]. This
conception was established to analysis of platklimge by Nerantzaki and Katsikadelis [39] and
Chinnaboon, Chucheepsakul and Katsikadelis [4Ghil&ily Babouskos and Katsikadelis [41, 42]
solved problem of flutter instability of dumped f@asubjected by conservative and non-conservative
loading.

In present paper, an analysis of initial stabitifynternally supported thin plates by the dire&NB
will be presented. The analysis will focus on thedified, simplified [31] formulation of thin plate
bending. The Bézine [3] technique will be estaldishio directly derive boundary-domain integral

equation.

2. MODELLING OF INTERNAL SUPPORTS

Internal constrains can have the character of stippaselected points, column or continuous linear
supports. Using direct Bézine technique it is nsagsto expand two boundary-domain integral
equations [3] to include additional elements whitsee unknown values are the suitable reaction as:
concentrated forces (Fig. 1), forces distributedrahe column cross-sections and distributed along
the continuous linear constraints. The internalicel support can be modelled as the surface with one
collocation point with constant distribution of theaction (Fig. 2a, 2b, 2c). If the column supgas

a large dimensions in reference to plate dimengisageral sub-surface can be introduced on the



column surface (Fig. 2d). To calculate elementhefcharacteristic matrix, it is necessary to irdésy
suitable fundamental functions on the column serfaicsub-surfaces. | case of the column of arlyitrar
shape (Fig. 2b, 2c) the formulas derived by Abdih&s and Hartley [6] can be used. The internal
linear continuous supports can be modelled asdhefsthe sections (elements) of the constant type
(Fig. 3). Because the fundamental solution for thlimte has a singularity of the second order, the
collocation point of internal single element can Ibeated at the centre of them. Using another
approach, the internal continuous support can éated as a column rectangular support with one

edge dimension much smaller than the second, pdiqear (Fig. 4).

Fig. 1. A plate internally supported at the selégisints.
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Fig. 2. Definitions of the column support.

Fig. 3. A plate resting on linear continuous in&rsupport.
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Fig. 4. Internal continuous supports: single elenaoéithe constant type.



3. INTEGRAL FORMULATION OF PLATE BENDING AND INITIA L STABILITY
PROBLEM CONSIDERING INTERNAL SUPPORTS

The differential equation governing of plate iniggability has the form [43, 44]:
DM*w=-p (3.1)

where p is the substitute load, which has the form:

2
=N, aa—+2N ALY Ba—‘;" (3.2)
Y " oxay oy

In the majority of contributions devoted to the Bgagion of BEM to the thin (Kirchhoff) plate
theory, the derivation of the boundary integralaon involves the known boundary variables of the
classic plate theory, i.e. the shear force anc¢timeentrated corner forces. Thus, on the plate dayn
there are considered the two physical quantitteseguivalent shear forag,, reaction at the platé™
corner R, the bending momen ,, the corner concentrated forces and two geomedniables: the
displacementy, and the angle of rotation in the normal directn The boundary integral equation
can be derived using the Betti's theorem. Two plate considered: an infinite plate, subjectedh¢o t

unit concentrated force and a real one, subjectetet real in plane loadingd,, N,, and N, . The

plate bending problem is described in a unique kyaywo boundary-domain integral equations. The

first equation has the form:
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where the fundamental solution of this biharmomjaation
W (y.x) =% B(y, x) (3.4)

which is the free space Green function given as



w (y,x)=8i]_‘:)ﬁﬁ2 n(r) (3.5)
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for a thin isotropic plater = |y —x|, O is the Dirac deltap = )
-V

is the plate stiffnesx is

the source point anglis a field point. The coefficient(x) is taken as:
c(x) =1, whenx is located inside the plate domain,
c(x)= 05, whenx is located on the smooth boundary,
c(x) =0, whenx is located outside the plate domain.
The second boundary-domain integral equation caolbained replacing the unit concentrated
force P* =1 by the unit concentrated momemt, =1, which is equivalent to the differentiation of the

first boundary integral equation (3.3) with respexthe co-ordinate at a pointx belonging to the

plate domain and letting this point approach thenoary and taking coincide with the normal to it
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The second boundary-domain integral equation caalg® derived by direct application of the
boundary domain integral equation (3.3) for noewdadfethe collocation points located in the same

normal line outside the plate edge. This doublelocation point approach was presented in

publication [32—35]. The detailed procedure for deeivation of the fundamental solution, the ingdgr



representation of the solution and the two boundamain integral equations is presented by
Katsikadelis in [36, 37].

The plate bending problem can also be formulateal imodified, simplified way using an integral
representation of the plate biharmonic equatiorcaBse the concentrated force at the corner is used
only to satisfy the differential biharmonic equatiof the thin plate, one can assume, that it cbeld
distributed along a plate edge segment close tatheer [31]. As a result, the boundary integral

equations (3.3) and (3.6) will take the form:
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and

T,(y)=T.(y)+R,(y). (3.9)

The expression (3.9) denotes shear force for cldrapd for simply-supported edges [31]:



V,(y) on the boundary far from the corr

Rn(y) on a small fragment of the boundary
close to the crner

In the case of the free edge we must combine tgke af rotation in the tangent directiqt;(y) with

the fundamental functioM . (y). Because the relation betwegn(y) and the deflection is known:

¢S(y)=%, the angle of rotations_(y) can be evaluated using a finite difference schefrtae
S

deflection with two or more adjacent nodal valugs|[ In this analysis, the employed finite diffecen

scheme includes the deflections of three adjacedé¢s

4. CONSTRUCTION OF SET OF ALGEBRAIC EQUATION
The plate boundary is discretized by elements & ¢onstant type. Three approaches of
constructing the boundary integral equations, appélso in [31], are considered: the first, singula

where the collocation point is located exactly ptae edge (Fig. 5),

plate domain

Fig. 5. Collocation point assigned to the bounddeynent of the constant type.

the second non-singular approach, the boundary-lomtegral equations can be formulated using
one set of collocation points (Fig. 6a) and thirke owhere two sets of collocation points (Fig. 6b)
located outside of the plate boundary on the liorenal to the plate edge are considered.

a) b) M,

plate domain

plate domain

Fig. 6. One collocation point a) and two collocatfmints b) assigned to the boundary element ofbimstant
type.



It is assumed that a rectangular plate is compdessty by N, forces. Then, in the boundary

integral equations (3.8) and (3.9) takes a staryltbe partN, [ﬂazw/axz). The unknown variable in

internal collocation points is the parameker 62W/6X2 , the plate curvature i direction [24, 31]. It

is also assumed, that a plate has a regular shiéipeutvany holes. The distribution of the normal in

plane loading along plate edge perpendicular to xhdirection has the constant value. The plate

domain Q is divided into finite number of sub-domains jostdefine a plate curvature in selected

internal collocation points associated with thage-domainsQ,,. The plate domaim® is divided into

finite number of sub-domains just to define a platevature in selected internal collocation points

associated with these sub-domafds. The normal loading\, = N is constant on the length of the

single plate edge (Fig. 7).
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Fig. 7. Distribution of in plane loading.

The set of algebraic equation can be written irfoine:

whereA =N, and

Geg
A
Gy

GKB

Ggs
=1
Ggs

GKS

Ggq

0

qu

G

Kq

-A[Gg, |

0

-G,

-AG,, +1

B 0
#s| |0
R =
q 0
| [k 0

(4.1)



Ggg and G are the matrices of the dimensions of the dimengiol x 2N) and of the dimension
(2N X S) grouping boundary integrals and depend on typsoahdary, wher&\ is the number of
boundary nodes (or the number of the elements efctinstant type) an8 is the number of
boundary elements along free edge;

Gg, Is the matrix of the dimensio(lzN X L) grouping integrals over the internal support (owiuor

linear) sub-domains, whereQ, =Q_  for column supports and2, =TI, for continuous linear

supports;

Gg, Is the matrix of the dimensio@N x M ) grouping integrals over the internal sub-domas;

A is the matrix grouping difference operators cotingcangle of rotations in tangent direction with
deflections of suitable boundary nodes if a plate & free edge.

G, and G,g are the matrices of the dimensiénx 2N) grouping the boundary integrals of the
appropriate fundamental functions, whdreis the number of the internal collocation points
associated with internal supports & the number of the boundary nodes;

Ggq is the matrix of the dimensio@_ x L) grouping integrals over the internal support sardins

G« is the matrix of the dimensio@L x M ) grouping integrals over the internal sub-domans,

The fourth matrix equation (44)n the set of equation (4.1) is obtained by camtion the
boundary integral equations for internal collocatmints associated with internal sub-domaihs.
According the typical approach, in this equatiome fplate curvature can be derived by double
differentiation of boundary integral equation (34%) by constructing one integral equation with
respect to central collocation point '1' (Fig. 8)dnging to each internal sub-surface;

G, Is the matrix of the dimensiorﬁM x2N) grouping the boundary integrals of the second

derivatives with respect to the co-ordinatef the appropriate fundamental functions, whéres
the number of the internal collocation points &hid the number of the boundary nodes;

G,s is the matrix of the dimensiofM x S) grouping the boundary integrals of the secondvetivies

with respect to the co-ordinateof the appropriate fundamental functions;
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G, is the matrix of the dimensio(M x L) grouping integrals over the internal support (owluor

linear) sub-domains, wher€@, =Q, for column supports and2, =TI, for continuous linear
supports;
G, Is the matrix of the dimensio(M x M) grouping the integrals of the second derivativéth w
respect to the co-ordinaxeover the internal sub-surfaces, 0Q .
In accordance with the simplified approach, thdeplaurvature can be also establish by addition
two internal collocation points ('2' and '3") [30ue to this conception it is necessary to construc

three integral equation considering three collarapoints (‘'1', '2' and '3") and using equatio)(B

unchanged form. These two approaches are illudtiatEig. 8.

a) , X b) X
-~ O
1 2 1 3
y o b y o 0 o b
AX AX
-~ O
a a
£ £ A £

Fig. 8. Definition of the curvature in central aalhtion point '1' [31].

According the second approach the plate curvatuestral point '1' is calculated by constructing

difference quotient

_ W _w, —20W, +w,
N (ax)?

K=K

(4.2)

hence elements of the matric&;, G5, G,, and G, can be evaluated using three boundary

Kq
integral equations based only on the boundary rategquation (3.7). Elimination of boundary

variables B, ¢ and internal support vectay from matrix equation (4.1) leads to the standard
eigenvalue problem:

{A-dn}nc=0 (4.3)

where A =1/ ,
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5. MODES OF BUCKLING
The elements of the eigenvectorobtained after solution of the standard eigenvahablem (4.3)
present the plate curvatures. The set of the adiebequation indispensable to calculate the

eigenvectonw elements has a form:
Gegs Ggs Gg, O] (B A Gy, [k
A -1 0 Of g 0

§ = (5.1)
G Ggs Go 0| |0| [A1Bg, &

Gue Gus Gug ] (W A6, k

In the set of the equation (5.1) the first, secamd third equations (54)(5.1) and (5.1) are
obtained from the first, second and third equatioing.1) and the fourth equation (519 gotten by
construction the boundary integral equations fécudating the plate deflection in internal colloiocat

points.and internal support vecta from equation (5.1) gives the elements of the edmlisplacement

vector:
WZAEtGWW_éWBmS_jém;BW-'-
S B 8,5y -G B 5] -G 62 &2
_qu_GWBEGBBEGBW qq_Gqu:GBBEGBq Wq_Gqu:(BBBl:(BBW:lIjk
and
ész WB+GWSm (53)
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6. NUMERICAL EXAMPLES
The initial stability problem of a rectangular @atresting on internal column or linear continuous
supports is considered. Considered plates havéaalhdary simply-supported or supported two

opposite edges. In plane loadig, is acting along a supported edge. The criticilevaf the in

plane loading is investigated. Each of plate edgaivided by the boundary elements of the constant
type with the same length. Internal continuousdirgupports is divided by the sections (elemerfts) o

the constant type with the same length. A colums &asquare cross-section associated with one
collocation point and the side length mich smattean the shorter side of a plate. The set of the
internal collocation points in which the curvatwestor k is established, associated with internal sub-

surfaces is regular.

Quasi-diagonal terms of the mati@g; in equations (4.1) and (5.1) are calculated arcaljy and

the rest of them using 12—points Gauss quadrailrehe terms of the matrice&g,, Gg,, Gg,,

Gygr Gaer Gugr Guxr Gaws Gugand G, in equations (4.1) and (5.1) are evaluated aralyyi

The rest of the terms in matriceS;, are calculated numerically by applying 12—pointau€s

guadrature.

To compare obtained results with previous ones Bfj, the following material properies are
assumed: for plates resting on internal column suppthe Young modulug = 1.0 kPa and the
Poisson ratiov = 0.3; for plates resting on internal continuougéir supports Young modul&s= 30.0
GPa and the Poisson ratie- 0.167.

The following notations are assumed:

BEM | — singular formulation of governing boundatgmain integral equations (3.7) and (3.8)
with the second equation obtained by single diffeation of equation (3.7), the vector of curvature
is established by double differentiation of thetfigoverning boundary-domain integral equation)(3.7

BEM Il — non-singular formulation of governing balary-domain integral equations (3.7) and
(3.8), with the second equation (3.8) obtained Iffer@ntiation of the equation (3.7), the vector of
curvatures is established by double differentiaivdrthe first governing boundary-domain integral

equation (3.7). The collocation point of single bdary element is located outside, near the plate
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edge. For one collocation point; = 51/d Whereg1 is distance of collocation point from the plate

edge andl is the boundary element length;
BEM Il — non-singular formulation of governing bodary-domain integral equation (3.7) with the

second boundary-domain integral equation obtaioedhe set of additional collocation points with
the same fundamental solutian’, the vector of curvatures is established by canstrg difference

quotient (4.2) and fundamental solution”. Localization of two collocation points for single
boundary element is determined l&y: and &, = 52/d . For three collocation point belonging for each

internal sub-domain element; = Ax/a.

FEM - regular finite element mesh and two typeslefnent S4R (four node with three degree of
freedom per node) and S8R (eight node with thregedeof freedom per node) of ABAQUS program

with reduced integration were assumed into comparanalysis.

The critical forceN, is expressed using non-dimensional term:

N, =% i, 0, (6.1)

6.1. The plate simply-supported on two oppositeesdgith two remaining edges free resting
on two internal column supports under uniformly stamt normal loading

Static and loading scheme is shown in the Fig. flate dimensions arg, = 025[, and the
internal support dimensions: (squbreb), b= 0020, . Two boundary and domain discretization are

adopted:
(a) number of boundary elements is equal to 96,bmurof internal collocation points is equal to

144 and internal sub-surface dimension (sqaare) is a=1/6,;

(b) number of boundary elements is equal to 12fkar of internal collocation points is equal to

400 and internal sub-surface dimension (sqaare) is a= 0050, .

The results of calculation are presented in Tahbles3. The influence of localization of internal
collocation points on critical force values usingM 11l approach is presented in Tables 2 and 3. The

first buckling mode is shown in the Fig. 10.
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Fig. 9. The plate simply-supported on two oppositges with two remaining edges free resting onitternal

Table 1. Critical force values, = 0.01,¢, = 0.1,¢, = 0.01.

column supports under uniformly constant normatling.

N BEM lI(a) BEM lli(a) BEM lI(b) BEM llI(b) FEM S4R FEM S8R

or [29] present [29] present [29] [29]

1 8.8260 9.4300 8.9410 9.7432 8.5580 8.9490
2 19.6310 20.7885 19.6740 21.2720Q 17.887( 17.5840
3 36.8010 39.1424 37.0280 40.2454 35.717( 34.6450
4 56.7990 60.0224 56.8830 61.4581 55.451( 52.8860

Table 2. Critical force values. Solution BEM lli(fy different value o, = Ax/a, &, = 0.01,6, = 0.1.

N &, =Ix/a
“ 0.0001 0.001 0.01 0.1 0.2
1 9.4304 9.4300 9.4300 9.4289 9.4300
2 20.7870 20.7884 20.7885 20.7869 20.7884
3 39.1460 39.1426 39.1424 39.1438 39.1424
4 60.0066 60.0224 60.0224 60.0320 60.0228

Table 3. Critical force values. Solution BEM lli(for different value of, = Ax/a, &; = 0.01,6, = 0.1.

N &, =Mx/a
“ 0.0001 0.001 0.01 0.1 0.2
1 9.7431 9.7432 9.7432 9.7437 9.7458
2 21.2721 21.2720 21.2720 21.2741 21.2812
3 40.2448 40.2455 40.2456 40.2527 40.2732
4 61.4605 61.4581 61.4581 61.4730 61.5156

15



6.2. The plate clamped on two opposite edges withremaining edges free resting on two
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Fig. 10. The first buckling mode.

internal column supports under uniformly constasrimal loading

Static and loading scheme is shown in the FigThe. plate properties were assumed identically as

in Example 6.1.
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Fig. 11. The plate simply-supported on two oppositges with two remaining edges free resting onittarnal

column supports under uniformly constant normatling.

The results of calculation are presented in Tablles6. The influence of localization of internal

collocation points on critical force values usingM8 Ill approach is presented in Tables 5 and 6. The

first buckling mode is shown in the Fig. 12.

Table 4. Critical force values, = 0.01,¢, = 0.1,¢, = 0.01.

N BEM li(a) BEM lli(a) BEM II(b) BEM lli(b) FEM S4R FEM S8R

or [29] present [29] present [29] [29]

1 18.6948 20.3522 18.952 21.0271 18.0400 17.7350
2 37.4158 40.0875 37.669 41.2555 36.0710 34.9630
3 56.7005 60.5224 57.006 62.1079 55.6600 53.0771
4 77.9972 79.8567 77.895 83.5699 77.2380 72.258
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Table 5. Critical force values. Solution BEM lli(fox different value o, = Ax/a, ¢ = 0.01,6, = 0.1.

N &y =x/a
“ 0.0001 0.001 0.01 0.1 0.2
1 20.3504 20.3522 20.3522 20.3522 20.3522
2 40.0962 40.0875 40.0875 40.0875 40.0875
3 60.5097 60.5221 60.5224 60.5224 60.5228
4 79.8718 79.8567 79.8567 79.8567 79.8561

Table 6. Critical force values. Solution BEM lli(for different value of, = Ax/a, &; = 0.01,6, = 0.1.

N &, =Mx/a

“ 0.0001 0.001 0.01 0.1 0.2

1 21.0270 21.0271 21.0271 21.0286 21.0340
2 41.2552 41.2553 41.2555 41.2616 41.2806
3 62.1090 62.1076 62.1079 62.1224 62.1641
4 83.5686 83.5699 83.5699 83.5910 83.6551

Fig. 12. The first buckling mode.

6.3. The plate simply-supported on two oppositeeedgith two remaining edges free resting
on linear continuous internal support under coristarmal loading

Static and loading scheme is shown in the Fig. 13.

N
| I | ~
| |
|2 X | |
| | |
N, | | |
| | | N | Iy
|y | |
| | |
| | |
1 1 [} %<
, 0.5, , 0.51, ,
A A A

Fig. 13. The plate, simply-supported on two opposiiges with two edges free and one internal coots
support under constant normal loading.
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Each plate edgdivided into number o0 boundary elements of the same length. Numbitteinal

linear continuous elements of the same length usletp 40 and number of internal sub-surfaces used

to describe the plate curvature is equal to 20@. dlate geometry is defined ak:= 2.0l, = 20.0 m,

h,= 0.2 m. The results of calculation are presentefiables 7 and 8. The influence of localization of

internal collocation points on critical force vasuesing BEM Il approach is presented in Tablelge T

first buckling mode is shown in the Fig. 14.

Table 7. Critical force values, = 0.01,¢, = 0.1,¢, = 0.01.

N BEM lI BEM I FEM S4R
o [30] present [30]

1 19.3976 21.3618 19.4324
2 40.2226 43.4987 40.7566
3 58.6534 59.8541 58.3006
4 79.0824 82.8516 77.3624

Table 8. Critical force values. Solution BEM llIrfdifferent value o, = Ax/a, &, = 0.01,, = 0.1.

N &y =Ix/a
“ 0.0001 0.001 0.01 0.1 0.2
1 21.4618 21.4618 21.4618 21.4596 21.4539
2 43.4985 43.4987 43.4987 43.4983 43.4993
3 59.8548 59.8548 59.8541 59.8353 59.7845
4 82.8509 82.8516 82.8516 82.8332 82.7867

Fig. 14. The first buckling mode.

6.4. The plate clamped on two opposite edges withremaining edges free resting on linear
continuous internal support under constant noroedihg

Static and loading scheme is shown in the FigThg. plate properties were assumed identically as

in Example 6.3.
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Fig. 15. The plate clamped on two opposite edgés twio edges free and one internal continuous supmaler

constant normal loading.

The results of calculation are presented in Tablasd 10. The influence of localization of internal

collocation points on critical force values usingM 11l approach is presented in Table 10. The first

buckling mode is shown in the Fig. 16.

Table 9. Critical force values, = 0.01,¢, =0.1,¢, = 0.01.

J BEM I BEM Il
or [30] present
1 40.1352 44.6064
2 79.3184 83.1841
3 79.5774 85.9430
4 118.7634 127.3070

Table 10. Critical force values. Solution BEM ldrfdifferent value of, = Ax/a, &1 = 0.01,e, = 0.1.

N &y =x/a

“ 0.0001 0.001 0.01 0.1 0.2

1 44.6061 44.6064 44.6064 44.6055 44.6057
2 83.1834 83.1841 83.1841 83.1634 83.1115
3 85.9446 85.9431 85.9430 85.9567 86.0016
4 127.3064 127.3072 127.3070 127.2957 127.276

Fig. 16. The first buckling mode.
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6.5. The plate simply-supported on all edges rgstin linear continuous internal support
under constant normal loading

Static and loading scheme is shown on the FigThe. plate properties were assumed identically

as in Example 6.3.

I - I
| | :
| z X | |
' |
I
N, : : | N, | Iy
I
Ly | I
| | |
e | 5
N
v 0.5l v 0.5l v
7 7 7
Fig. 17. The plate simply-supported on all edgab@me internal continuous support under constamhab

loading.

The results of calculation are presented in Tafitesand 12. The influence of localization of
internal collocation points on critical force vasuasing BEM Il approach is presented in Table 12.

The first buckling mode is shown in the Fig. 18.

Table 11. Critical force values, = 0.01,6, = 0.1,6, = 0.01.

BEM | BEM lI BEM llI
i present [30] present

1 79.7721 79.7720 79.7708
2 96.8938 96.8938 96.8966
3 125.9391 125.9394 125.9334
4 169.3239 169.3238 169.3156

Table 12. Critical force values. Solution BEM ldrfdifferent value o, = Ax/a, &1 = 0.01,e, = 0.1.

N &y =x/a

“ 0.0001 0.001 0.01 0.1 0.2

1 79.7708 79.7701 79.7708 79.7767 79.7963
2 96.8938 96.8957 96.8966 96.9121 96.9624
3 125.9347 125.9331 125.9334 125.975; 126.1018
4 169.3183 169.3147 169.3156 169.4013 169.6607
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Fig. 18. The first buckling mode.

6.6. The plate simply-supported on two opposite dmbonal edges resting on linear
continuous internal support under constant noroedihg

Static and loading scheme is shown on the FigTh®. plate properties were assumed identically

as in Example 6.3.

0.5l, y
/ / /

Fig. 19. The plate simply-supported on two oppoaitd diagonal edges resting on linear continuoiesrial
support under constant normal loading.

The results of calculation are presented in Tali@sand 14. The influence of localization of
internal collocation points on critical force vasuasing BEM Il approach is presented in Table 14.

The first buckling mode is shown in the Fig. 20.

Table 13. Critical force values, = 0.01,, = 0.1,¢, = 0.01.

N BEM I BEM llI

“ present present

1 38.4612 40.0258
2 48.3226 51.0846
3 97.2487 101.4683
4 125.2491 132.6167
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Table 14. Critical force values. Solution BEM ldirfdifferent value o, = Ax/a, &1 = 0.01,e, = 0.1.

N &y =x/a
“ 0.0001 0.001 0.01 0.1 0.2
1 40.0259 40.0258 40.0258 40.0243 40.0213
2 51.0844 51.0846 51.0846 51.0841 51.0849
3 101.4677 101.4680 101.4683 101.4914 101.5642
4 132.6176 132.6165 132.6167 132.6527 132.7688

S P PP g
=
=

Fig. 20. The first buckling mode.

6.7. The plate simply-supported on two oppositeesdresting on two linear continuous
internal support under constant normal loading

Static and loading scheme is shown on the FigTBg. plate properties were assumed identically

as in Example 6.3.

y

I I I |
I I I [
I I I |
I | I |
| | | | v
I | I [
I I I [
I I I [
1 | 1 |

E.
Ne 0.5, , 0.5, , 0.5, N,

A / A

Fig. 21. The plate simply-supported on two oppoaitd diagonal edges resting on linear continuctgsnal
support under constant normal loading.

Each plate edgeivided into number o#5 boundary elements of the same length. Numbgrterdnal
linear continuous elements of the same length isletp 40 and number of internal sub-surfaces used
to describe the plate curvature is equal to 30@. dlate geometry is defined ak;= 3.0l, = 30.0 m,
h,= 0.2 m. The results of calculation are presemetables 15 and 16. The influence of localization
of internal collocation points on critical forcelwras using BEM Il approach is presented in Takle 1

The first buckling mode is shown in the Fig. 22.
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Table 15. Critical force values, = 0.01,6, = 0.1,¢, = 0.01.

N BEM II BEM I
o present present
1 29.0968 32.4116
2 43.8981 47.8172
3 78.7263 85.0558
4 87.4007 88.6611

Table 16. Critical force values. Solution BEM ldrfdifferent value of, = Ax/a, ¢, = 0.01,¢, = 0.1.

N &, =1x/a

“ 0.0001 0.001 0.01 0.1 0.2

1 32.4118 32.4115 32.4116 32.4152 32.4257
2 47.8162 47.8170 47.8172 47.8245 47.8457
3 85.0538 85.0553 85.0558 85.0776 85.1412
4 88.6600 88.6606 88.6611 88.6751 88.7118

Fig. 22. The first buckling mode.

6.8. The plate simply-supported on all edges rgstimtwo linear continuous internal support
under constant normal loading

Static and loading scheme is shown on the FigTR8. plate properties were assumed identically

as in Example 6.7.

F - - - | *
| | | |
| z X [ | I
: | | |
| | | |
: | | | y
TR | I |
[ | |
' | | |
I___________' __________ S — — 5&
N, 0.5l, , 0.51, y 0.5l, L N
A A A A

Fig. 23. The plate simply-supported on all edgstimg on two linear continuous internal supportemcbnstant
normal loading.
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The results of calculation are presented in Tableand 18. The influence of localization of intdrna
collocation points on critical force values usingM 11l approach is presented in Table 14. The first

buckling mode is shown in the Fig. 24.

Table 17. Critical force values, = 0.01,6, = 0.1,6, = 0.01.

N BEM | BEM Il BEM llI

“ present present present

1 119.7662 119.7672 119.7701
2 132.2487 132.2499 132.2535
3 161.2000 161.2006 161.2066
4 189.0590 189.0507 189.0539

Table 18. Critical force values. Solution BEM ldrfdifferent value of, = Ax/a, ¢ = 0.01,¢, = 0.1.

N &, =Ix/a
“ 0.0001 0.001 0.01 0.1 0.2
1 119.7721 119.7701 119.7701 119.780( 119.8105
2 132.2499 132.2535 132.2535 132.2703 132.3207
3 161.1999 161.2061 161.2066 161.2426 161.3524
4 189.0615 189.0531 189.0539 189.11690 189.3086
e S
P e g O W

7
— N
"o"f,’,”lll//,"/l',o‘o“:‘\:‘
W

Fig. 24. The first buckling mode.

CONCLUSIONS

An initial stability of thin plates resting on imteal supports using the boundary element method
was presented. Presented issue was solved witmalfied and simplified approach, in which the
boundary conditions are defined so that there isieed to introduce equivalent boundary quantities
dictated by the boundary value problem for the titwnic differential equation. The collocation

version of boundary element method with singulad aon-singular calculations of integrals were
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employed and the constant type of the boundaryexienvas introduced. The Bézine technique was
used to establish the vector of internal suppattien forces and the vector of curvatures inside a
plate domain. A plate domain was divided into regtdar sub-surfaces associated with one
collocation poinits in which the vector of curvagaris established. In presented examples considered
plates are subjected in plane by constant nornaaihg. The high number of boundary elements,
sections representing internal linear continuousstraints and internal sub-surfaces was not regjuire
to obtain sufficient accuracy. The loaded plateeeshyist be supported which is required in proposed
formulation of buckling analysis. A significant m@se in the number of boundary elements and
internal sub-surfaces does not affect the radicgirovement of the results of calculations. The
resulting solution is stable for a large rangeatiess, = Ax/a.

Presented work relates entirely to the paper [Blyhich the buckling problem of a rectangular
plates by the Boundary Element Method was invetgtjalrhe boundary element results obtained for
proposed conception of thin plate bending issuesidening internal linear continuous and plane

constraints demonstrate the sufficient effectiversesl efficiency.
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