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ABSTRACT 

The paper is devoted to simply supported beams with bisymmetrical cross sections under a 

generalized load. Based on the Zhuravsky shear stress formula the shear deformation theory 

of a planar beam cross section is formulated. The deflections and the shear stresses of 

example beams are determined. Moreover, the numerical-FEM computations of these beams 

are carried out. The results of the research are shown in figures and tables.  
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1. Introduction  

 

The problem of shear stress in bending of beams was recognized and described by D.I. 

Zhuravsky in the 19th century. GERE and TIMOSHENKO [1] described in detail the Zhuravsky’s 

shear stress formula. S.P. Timoshenko in 1921 initiated an important problem consisting in 

considering the shearing effect in bending of beams by generalized Euler-Bernoulli beam 

theory. He assumed that the normal straight line before bending remains a straight line after 

bending being no more perpendicular to the bent beam line. The theory of normal straight line 

deformation of bent beams and plates was intensively developed in the latter half of the 20th 

century. RYCHTER [2] presented the shear-deformation beam-bending theories and extended 

them to two-dimensional displacement and stress fields. The relationships between accuracy, 

shear factors, and physical interpretations of the theory have been determined, showing that 

the Bernoulli-Euler type theory is a special case, giving accuracy equal to that of the other 

shear-deformation theories. KATHNELSON [3] considered small static deformation of isotropic 

linear elastic beams subjected to bending under arbitrary transverse load varying along the 

axial coordinate. A three-dimensional variational equation was used to formulate the 

governing equations of Timoshenko type, allowing to derive the formulae for the 

displacements and stresses in the cross-sectional area. WANG et al. [4] presented the theories 

of normal straight line deformation taking into account the shearing effect for beams and 

plates, with consideration of the papers published in past decades. HUTCHINSON [5] derived a 

new formula for the shear coefficient. In case of a circular cross section, the resulting shear 

coefficient is perfectly compatible with the values obtained by most of the publications. The 

shear coefficients were found for a number of various beam cross sections. KADOLI et al. [6] 

studied static behavior of functionally graded metal–ceramic beams using the higher order 

shear deformation theory. The principle of stationary potential energy was used in order to 

derive the static equilibrium equation of the beam in the finite element form. It was shown 

that the beam behaviour depends on whether the load is applied to the ceramic rich face or 

metal rich face of the beam. JUN and HONGXING [7] dealt with a uniform laminated composite 

beam using the trigonometric shear deformation theory, providing for sinusoidal variation of 

the axial displacement over the cross-section. Solution of the governing differential equations 

of motion enabled to formulate the dynamic stiffness matrix. REDDY [8] used the differential 

constitutive relations of Eringen and the von Kármán nonlinear strains in order to improve the 

classical and shear deformation beam and plate theories. This allowed to develop a new finite 



element model. Such an approach enabled to determine the effect of geometric nonlinearity 

and nonlocal constitutive relations on bending response of these structures. GHUGAL and 

SHARMA [9] analyzed static bending of thick isotropic beams with consideration of the 

transverse shear deformation effects. The authors applied the hyperbolic shear deformation 

theory in order to avoid the use of the shear correction factor. The principle of virtual work 

allowed to formulate the governing differential equations and boundary conditions of the 

beam. Accuracy of the theory was verified by comparison to the results obtained with the help 

of other refined shear deformation theories. THAI and VO [10] dealt with bending, buckling, 

and vibration of nanobeams using a nonlocal sinusoidal shear deformation beam theory, thus 

avoiding the need of the use of the shear correction factors. The equations of motion and 

boundary conditions of the beam were derived with the use of the Hamilton’s principle. The 

results obtained this way confirm the accuracy of the approach. AKGÖZ and CIVALEK [11] 

developed a new higher-order shear deformation model of a beam using the modified strain 

gradient theory, without the need of any shear correction factors. The authors studied static 

bending and free vibration of simply supported microbeams. The effects of thickness-to-

material length ratio, slenderness ratio and shear deformation on deflections and natural 

frequencies of microbeams were analyzed. It was shown that the effect of shear deformation 

becomes more significant for less slender beams. SAWANT and DAHAKE [12] worked out a 

new hyperbolic shear deformation theory allowing for analysis of a thick beam bending. The 

theory enables calculating of the transverse shear stresses directly from the constitutive 

relations, using no shear correction factors. The present theory is verified on the example of a 

cantilever isotropic beam subjected to varying load. The results were compared with those 

based on the other theories. BOURADA et al. [13] considered bending and vibration of 

functionally graded beams. The authors developed a simple and refined trigonometric higher-

order beam theory for this purpose, distinguished by fewer number of unknowns and 

equations than the other theories. The equations of motion were derived from the Hamilton's 

principle and the solutions were compared with those obtained based on other theories, 

demonstrating the effect of the inclusion of transverse normal strain on the deflections and 

stresses. POLIZZOTTO [14] considered a series of shear deformable beams using various 

approaches – from the Euler–Bernoulli to Timoshenko theory. Three deformation variables, 

namely two curvatures and a shear angle were applied with a view to determine two bending 

moments and the shear force. The principle of virtual power allowed to derive the equilibrium 

equations and the boundary conditions. In order to compute the normal stress the classical 

Navier expression was used, while the shear stress was calculated with the use of the 

Zhuravsky formula. The results are illustrated on the example of a simple cantilever beam. 

ENDO [15] presented a historical survey on the bending and shearing deformation concepts of 

beams and plates, compared with the corrected classical models. The survey shows that 

according to the corrected classical models the bending and shearing deflections are 

considered as separate physical entities. The method developed by the author enabled to carry 

out frequency analysis of isotropic plates and carbon fiber reinforced plastic laminated 

composite beams. The deformation concept enabled to develop a practical finite element 

formulation that is free from shear locking. ENDO [16] used the Hamilton’s principle to derive 

the author’s alternative beam and plate theories. The author assumed that the total deflection 

is a sum of the bending and shearing deflections. It was shown that according to these theories 

only a half of the shear deformations can be expressed explicitly. Such an approach is 

efficient in case of moderately thick structural models supplemented with the total deflection 

concept. ENDO [17] formulated exact frequency relationships between the classical Kirchhoff 

plate and the “one-half order” shear deformation plate or beam theory of the Mindlin plate 

theory in case of simply supported plate edges or beam ends. Additionally, an approximate 

frequency relationship was determined, having a very simple form and nearly enough 

https://www.sciencedirect.com/topics/engineering/shear-deformation
https://www.sciencedirect.com/topics/engineering/plate-theory
https://www.sciencedirect.com/topics/engineering/shearing
https://www.sciencedirect.com/topics/engineering/shear-deformation


accuracy for purposes of practical use. KHARLAB [18] proposed a complement to the theory of 

flexural shear stresses, being a generalization of the Zhuravsky's theory. The improved 

approach takes into account the deplanation of the beam cross section and allows to develop a 

simple formula for the potential energy of its deformation. GENOVESE and ELISHAKOFF [19] 

presented discussion of the role of the principle of virtual work and of the energy balance for 

formulation of planar static rod theories, in the range of large deformations, with 

consideration of the transverse shear. The discussion also included the differences between 

the Haringx and Engesser approaches to the problem. MAGNUCKI et al. [20] considered the 

simply supported beams subjected to non-uniformly distributed load. The model of the beams 

was formulated based on nonlinear hypothesis of deformation of the beam planar cross 

section and with consideration of the shear effect. Numerical-FEM models of the beams were 

developed with a view to compare the analytical and numerical results for an exemplary beam 

family. MAGNUCKI et al. [21] analytically studied the bending problem of the beams with 

consideration of a seventh-order shear deformation theory.  

The shear effect in the beams, described in the publications mentioned above, is taken into 

account with the use of the first-, second- and third-order beam theory. Thus, the main 

purpose of this paper is presentation of an individual theory of planar cross section 

deformations of the beams formulated based on the Zhuravsky shear stress formula. The 

performance of this theory is demonstrated for bending of the example beams with various 

bisymmetrical cross sections. The paper is a continuation of the subject area presented by 

Magnucki et al. [20] and [21].  

 

2. Bisymmetrical cross section of the beam – Zhuravsky shear stress  

 

The object of the study is the beam with bisymmetrical cross section of depth h and length 

L (Fig.1). The beam is situated in the Cartesian coordinate system xyz.  

 

 
 

Fig.1. Scheme of the bisymmetrical cross section of the beam  

 



The symmetrically varying width of the cross section in the depth direction is assumed in the 

following form  
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where the dimensionless width  
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and bb00 =  – parameter, ck  – exponent-real number, hy=  – dimensionless coordinate.  

The Zhuravsky shear stress formula (Gere and Timoshenko [1]) is as follows  
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where: ( )xV  – shear force, the second moment of the cross section about the z axis  
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and hy11 =  – dimensionless coordinate (  − 121 ), hb   – condition.  

Thus, the Zhuravsky shear stress formula (3) takes the following form  
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The formula (8) is a basis of formulation of the individual theory of planar cross section 

deformations of the beams.  

 

3. Analytical formulation of shear deformation theory of bending beams  

 

A planar cross section before bending does not remain planar after bending of the beam 

(Fig.2).  



 
 

Fig.2. Scheme of the deformation of the planar cross sections of the beam  

 

The longitudinal displacement in accordance with Fig.2 is as follows  

( ) ( ) ( )







−−= xf

dx

dv
hxu d , ,        (9) 

where: ( ) ( ) hxux 1=  – dimensionless displacement function, ( )df  – deformation function 

of the planar cross section of the beam, ( )xv  – deflection.  

Therefore, the longitudinal and shear strains are in the following form:  
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Consequently, the normal and shear stresses in accordance with Hooke’s law take the 

following form:  
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where: E  – Young’s modulus,   – Poisson’s ratio.  

Equating the Zhuravsky shear stress formula (8) to the above shear stress expression (11b) 
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• the dimensionless displacement function  
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The derivative and deformation function (12) of the planar cross section of the beam satisfy 

the conditions: 0
21
=


ddfd  and ( ) 121  =df .  

The example cross sections of the beams (CS-1: β0=2/10, kc=2, CS-2 (I-100): β0=4.5/50, 

kc=11.155, CS-3 (I-200): β0=7.5/90, kc=16.397) and corresponding graphs of the deformation 

function (12b) are shown in Fig.3.  

 

CS-1  

 
 

CS-2 (I-100)  

 
 

CS-3 (I-200)  

 
 

Fig.3. Three example cross sections and corresponding graphs of the function (12b)  

 

In the particular case for rectangular cross section ( 10 = , ( ) 1
~

=b , 121
~

=zJ , 310 =C ), the 

derivative and the deformation function (12) of the planar cross section are as follows:  
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These above expressions (14) are consistent with the shear deformation theory presented for 

example by WANG et al. [4].  

 

4. Deflection of the beam with consideration of the shear deformation theory  

 

The bending moment in accordance with the definition is as follows  
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Substituting the expressions for the dimensionless width (2) and normal stress (11a) into the 

above expression (15) and integrating, one obtains the equation  
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Taking into account the paper MAGNUCKI et al. [20] the generalized load of the simply 

supported beam is assumed (Fig.4). The intensity of non-uniformly distributed load is in the 

following form  
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where: k  – parameter ) ,0k , Lx=  - dimensionless coordinate 1,0  and F  – 

total load of the beam, L  – length of the beam.  

 

 
 

Fig.4. Scheme of the simply supported beam under the generalized load  

 

Consequently, the shear force is as follows  
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and the bending moment  
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The above expressions enable to formulate two particular cases of the load: the first one – the 

uniformly distributed load for 0→k , and the second one – three-point bending for →k  

(Fig.5).  

 
 

 
 

Fig.5. Graphs of the dimensionless shear forces ( ) ( )V V F =  and dimensionless bending 

moments ( ) ( )b bM M FL =   

 

The differential equation (16) in dimensionless coordinate with consideration of the 

expression (19) takes the following form  
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where: hL=  – relative length of the beam.  

Integrating the equation (20) and taking into account the functions (13) and the condition 

0
21
=ddv , one obtains the equation  
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Consequently, integrating the equation (21) and taking into account the condition ( ) 00 =v , 

one obtains the deflection curve of the beam  
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Thus, the maximum deflection ( ( ) ( )21max vv An = ) of the beam is in the following form  
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where: the dimensionless maximum deflection  

( )

z

v
sAn

J
C

C
v ~1~

3

2max












+= ,         (26) 

the shear and bending coefficients  
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The expressions (26) and (27) make a basis of example studies of bending of the beams with 

consideration of the shear effect.  

 

5. Analytical studies of beams bending  

 

The exemplary analytical studies of beams bending are carried out for the beams of relative 

length λ=10 with three selected bisymmetrical cross sections (Fig.3): CS-1: β0=2/10, kc=2, 

CS-2 (I-100): β0=4.5/50, kc=11.155, CS-3 (I-200): β0=7.5/90, kc=16.397), and material 

constant – Poisson’s ratio ν=0.3. The dimensionless second moment and coefficients of these 

selected cross sections are specified in the Tab.1.  

 

Table 1. The geometrical characteristic of selected cross section of beams  

Cross section  CS-1  CS-2 (I-100)  CS-3 (I-200)  

zJ
~

  0.060245  0.03420  0.02972  

0C   0.830938  1.290076  1.253780  

vC   0.1457584  0.0762374  0.0653415  

 

The studies are realized for two particular typical cases of the load (Fig.5):  

• the uniformly distributed load of intensity q (k→0), then,  



the values of the shear and bending coefficients (27) are as follows  
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The values of the above shear coefficient and dimensionless maximum deflections (26) of the 

example beams are specified in Table 2.  

 

Table 2. The calculation results of the selected beams under uniformly distributed load  

Cross section  CS-1  CS-2 (I-100) CS-3 (I-200) 
( )q

sC   6.272  8.972  8.600  
( )qAnv −

max   229.69  414.88  475.80  

• three-point bending (k→∞), then,  

the values of the shear and bending coefficients (27) are as follows  
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The values of the above shear coefficient and dimensionless maximum deflections (26) of the 

example beams are specified in Table 3.  

 

Table 3. The calculation results of the selected beams under three-point bending  

Cross section  CS-1  CS-2 (I-100)  CS-3 (I-200)  
( )F

sC   7.840  11.216  10.750  
( )FAnv −

max   372.92  677.48  776.35  

 

The dimensionless shear stress based on the expression (11b) for value ( ) 21
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=V  of the 

dimensionless shear force is as follows  
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The graphs of the dimensionless shear stress (30) for the three selected bisymmetrical cross 

sections are shown in Fig.6. 
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Fig.6. Graphs of the dimensionless shear stresses in the selected bisymmetrical cross sections  



 

6. Numerical-FEM studies of beams bending  

The considered beams are modelled using the SolidWorks software package. Taking into 

account the symmetry of the beams and their loads only a quarter of the whole structure is 

analyzed (Fig. 7a). The boundary conditions imposed on the model guarantee its proper 

behaviour. The model of the stockiest of the beams (i.e. CS1) is composed of about 

572 thousand of 3D tetrahedral finite elements with 4 Jacobian points. Such an approach 

corresponds to the simplest integrating at the element area, being sufficient in case of the fine 

mesh applied in the computation.  

The number of the nodes reaches nearly 840 000. In case of the CS2 and CS3 variants these 

numbers are correspondingly smaller. A part of the CS1 mesh is shown in Fig. 7b. The CS1 

mesh could be coarser without harming the computation quality. Nevertheless, in order to 

maintain equal mesh quality in all the considered cases, the mesh scale does not vary.  

The origin of the beam Cartesian coordinate system is located in the beginning of the beam 

neutral axis. The x-axis coincides with the neutral axis, the y-axis points down and, in 

consequence, z-axis is normal to the longitudinal middle plane of the beam.  

The boundary conditions specified below ensure that the one fourth of the beam behaves the 

same as if it belonged to the whole beam:  

• the beam model is simply supported at its edge (i.e. for x=0), therefore, the y 

displacements of the wall lying in the yz–plane are equal to zero,  

• the x displacements of the middle wall of the beam, i.e. of the middle surface Sm of the 

model (being the transverse plane of symmetry of the beam) are equal to zero too,   

• the z displacements of the model lying in the xy–plane (for z=0, the longitudinal plane 

of symmetry of the beam) are zero.  

 

 

 

 

 
 

Fig.7. a) – The FEM-model of the beam, b) – An example its mesh (confined approximately 

to the part marked with the dotted circle in 7a) 

 

Two load cases are considered:  

1. three-point bending, with the force ¼F downward directed and applied to the Sm 

surface; 

2. the force ¼F downward directed, distributed uniformly at the Su surface.  

Results of the numerical study are specified in Table 4.  

 

Table 4. The results of the numerical-FEM calculation of the selected beams  



Cross section  CS-1  CS-2 (I-100)  CS-3 (I-200)  
( )qFEMv −

max   229.6  414.9  475.4  
( )FFEMv −

max   372.8  676.6  775.2  

 

Comparison of the results obtained with FEM (Table 4) with data of the Tables 2 and 3 

displays very good compliance of the analytical and numerical approach to the problem. The 

differences do not exceed 0.5%.  

The graphs and values of the dimensionless shear stresses obtained with FEM are identical 

with those shown in Fig 6.  

 

7. Conclusions  

The theory of planar cross section deformations of the beams adopted based on the Zhuravsky 

shear stress formula well depicts the shear effect in the bent beams. The differences between 

the maximum deflections and shear stresses calculated analytically and numerically are 

insignificant (below 0.5%).  

The proposed theory is an original idea and makes a generalization of earlier known beam 

theories. Therefore, it may be easily used in analytical modeling of the beams with 

consideration of the shear effect. It should be noted that the higher-order theories introduce 

additional unknowns that give rise to difficulties in the analytical research, as indicated by 

Wang et al. [4].  
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