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The paper is devoted to simply supported beams with symmetrically varying mechanical
properties in the depth direction. Generalized load of the beams includes the load types from
uniformly distributed to point load (three-point bending). This load is analytically described
with the use of a certain function including a dimensionless parameter. The value of the
parameter is decisive for the load type. The individual nonlinear “polynomial” hypothesis is
applied to deformation of a planar cross section. Based on the definitions of the bending
moment and the shear transverse force the differential equation of equilibrium is obtained.
The equation is analytically solved and the deflections are calculated for an exemplary beam
family. The results of the study are specified in tables.
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1. Introduction

Contemporary studies related to bending, buckling and vibrations of the
beams, plates and shells made of Functionally Graded Materials (FGM) are
intensively developed. The shear effect in these structures is significant. The
problem is presented in details in the following papers.

Wang et al. [1] presented the theories of beams and plates developed in
the 20th century with consideration of the shear effect. In the works devoted to
this subject only the classical Euler-Bernoulli/Kirchhoff theory is applied. Mean-
while, such an approach is inadequate in case of deep beams and thick plates
where the effect of transverse shear strains becomes significant. The authors
demonstrate that the shear deformation theories improve the solutions as com-
pared to the classical theory. Magnucki and Stasiewicz [2] dealt with elastic
buckling of a beam of rectangular cross-section, made of an isotropic porous
material. The beam is simply supported at both ends and subjected to length-
wise compressive force. The properties of the porous material vary with respect
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to the beam thickness. The differential equations governing the beam stability
are derived based on the principle of stationarity of the total potential energy
and solved analytically. The solution provides an explicit expression for critical
load of the compressed beam. The results are confirmed by the Finite Element
Method computation. Magnucka-Blandzi [3] solved the problem of buckling
and deflection of a circular porous-cellular plate simply supported at its edge.
The plate was subjected to radial uniform compression and uniform pressure.
Mechanical properties of the plate porous material vary with respect to its thick-
ness. Based on the principle of stationarity of the total potential energy a system
of differential equations was derived that allowed to determine the critical load
and deflection. Thai and Vo [4] developed several higher-order theories taking
into account the shear effect arising while bending and free vibration of func-
tionally graded beams. To a certain extent these theories were similar to the
Euler-Bernoulli beam theory as they resulted in comparable equations of mo-
tion and boundary conditions derived from the Hamilton’s principle, as well as
the stress resultant expressions. The authors presented analytical solutions and
compared their results to the existing ones with a view to verify the suitability
of the theories. Dehrouyeh-Semnani and Bahrami [5] developed two size-
dependent Timoshenko beam finite elements based on the modified couple stress
theory – of four and six degrees of freedom (dof). The authors examined useful-
ness of these elements in solving the beam static bending. It was proved that the
results computed with the 6-dof element perfectly agree with the ones obtained
from other model calculations. Magnucki et al. [6] studied three-point bending
of a short beam. The values of elastic modules varied in respect to thickness of
the beam. Three differential equations of the beam equilibrium were obtained
based on the principle of stationary potential energy. Distribution of the shear
stresses arising in cross section of the beam as well as the deflections were de-
termined. A numerical – FEM model of the beam was developed with a view to
verify the analytical results. Paczos et al. [7] studied a short sandwich beam of
special honeycomb structure of the core. Values of elastic modules of the beam
material vary with respect to its length. Analytical model of the beam is based
on the “zigzag” hypothesis of planar cross section deformation. Deflection of the
beam is calculated analytically and experimentally determined. Both results are
compared with each other.

Particular group of the papers enumerated below is devoted to the structures
made of functionally graded materials (FGM).

Sankar [8] studied a functionally graded beam subjected to transverse loads,
in which the Young’s modulus exponentially varies with respect to the beam
thickness. This exponential variation enabled to define a single non-dimensional
parameter controlling the Young’s modulus values. A simple Euler-Bernoulli type
beam model was adopted. It was found that such an assumption is effective only
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for long and slender beams. Kadoli et al. [9] focused on static behaviour of
functionally graded beams composed of metal and ceramic materials with vary-
ing metal to ceramic ratio. The static equilibrium equation of the beam of finite
element form was formulated based on the principle of stationary potential en-
ergy. The authors presented a comprehensive discussion of the numerical results
obtained for the case of relatively thick beam subjected to uniformly distributed
load and various boundary conditions. Kapuria et al. [10] devoted their paper
to theoretical and experimental analysis of layered functionally graded beams.
They studied bending and free vibration of the beams using the third order zigzag
theory with a view to determine the effective modules of elasticity of particular
layers. Theoretical predictions calculated for the beams with varying ceramic
content are compared to the experiment results. The zigzag theory proved to be
an effective tool for modelling of these beams. Giunta et al. [11] analyzed the
beams made of functionally graded materials using classical and more sophis-
ticated theories. The authors proposed several theories enabling analysis of the
beams made of the materials the properties of which vary along one or two direc-
tions. The classical beam theories are then particular cases of these new theories.
Various beam height to length ratios were considered. The results obtained ana-
lytically were verified by three-dimensional finite element models.Kahrobaiyan
et al. [12] formulated a new model of functionally graded Euler-Bernoulli beam.
The model considered the size-effect in micro-scale and, therefore, was composed
of functionally graded microbeams. The governing equation and boundary condi-
tions were obtained using a variational method. The problems of static bending
and free-vibration of the model are considered for the microbeams, the material
properties of which varied with respect to thickness in accordance with power
law. The results were compared to the ones obtained with the help of classical
continuum theories. Li et al. [13] presented the bending problems of the Tim-
oshenko beams made of functionally graded materials (FGM). The governing
equations are analytically derived using the Euler-Bernoulli theory for homoge-
nous beams. The bending moment, shear force, deflection and rotational angle of
the beam are expressed in terms of deflection of a homogenous Euler-Bernoulli
beam with the same geometry, load and end constraints. The analytical solutions
obtained this way may serve as guidelines for further research of FGM beams.
Zhang [14] studied bending of the functionally graded beams using the physical
neutral surface theory and adopting nonlinear von Kármán strain-displacement
relationships. The author assumed that the material properties depend on tem-
perature and vary with respect to beam thickness. The approximate solutions of
the beam bending problem were obtained using the Ritz method. Rahaeifard
et al. [15] applied the strain gradient theory to analysis of the nonlinear Euler-
Bernoulli beams made of functionally graded materials. Composition of the beam
material varies with respect to beam thickness based on a power law. The non-



444 K. MAGNUCKI, J. LEWINSKI

linear governing equation and boundary conditions were determined with the use
of the Hamilton’s principle. Static deflection and free vibration of the beam were
computed. The calculations have shown that the classical theories may be con-
sidered as special cases of the strain gradient theory. Chen et al. [16] presented
the solutions of elastic buckling and static bending of shear deformable func-
tionally graded porous beams, using the Timoshenko beam theory. A system of
differential equation governing behaviour of the porous beams was obtained with
the use of the Hamilton’s principle. It was found that variation of the porosity
distribution affects the structural performance that enabled to suggest the poros-
ity pattern ensuring better buckling resistance and bending behaviour. Li and
Hu [17] used the nonlocal strain gradient theory to study the nonlinear bending
and free vibrations of two-constituent functionally graded beams. The authors
adopted the nonlinear Euler-Bernoulli and Timoshenko beam models and, based
on the Hamilton’s principle, formulated the equations of motion and boundary
conditions. The stretching effect of the beam mid-plane caused that the nonlin-
ear bending deflections were smaller as compared to linear cases subjected to the
same force, while the nonlinear vibration frequencies exceeded the ones obtained
with the use of linear approach. Nejad and Hadi [18] devoted their work to the
problem of static bending of Euler-Bernoulli nano-beams made of a functionally
graded material. Material properties of the beam, being an Euler-Bernoulli nano-
beam, vary with respect to thickness and length, according to arbitrarily chosen
function. The model of the beam is formulated with the use of the Eringen’s
nonlocal elasticity theory. The governing equations are formulated based on the
principle of minimum potential energy. Several numerical results are presented,
showing the effects of the pattern of material properties variability on bending.

Sayyad and Ghugal [19] provided a review of the literature devoted to
bending, buckling and free vibration of the composite and sandwich beams. The
authors specify many literature items dealing with shear deformable isotropic,
laminated composite and sandwich beams, using various theories. The review
cites 515 references, suggests possible scope of further research on the subject.
Magnucki et al. [20] presented a work devoted to bending and free vibration
of porous beams with consideration of the shear effect. Mechanical properties of
the beam change with respect to its thickness, symmetrically with regard to the
neutral axis. The functions adjusting the pattern of the material variability are so
formulated as to reflect homogeneous, nonlinearly variable and sandwich struc-
tures. The Hamilton’s principle allowed to derive two differential equations of mo-
tion that are solved analytically. Taati [21] presented an accurate solution of
buckling and post-buckling behaviour of functionally graded micro-beams under
combined thermomechanical loads. The equations governing these phenomena
have been derived based on the principle of minimum total potential energy,
using the modified couple stress theory. Exact solution of the equations was ob-
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tained by the differential operator method. Moreover, a detailed discussion of
the effects of geometry, and material distribution variation on the post-buckling
behaviour is presented.

The subject of the study are simply supported beams of length L, width b, and
depth h with symmetrically varying mechanical properties in the depth direction.
The bending problem of the beams is analytically studied, with consideration
of the shear effect. The beams carry the generalized transverse load of intensity
q(x) (Fig. 1).

Fig. 1. Scheme of the simply supported beam with the generalized transverse load.

The paper includes an original formulation of the load, allowing to define
the load distribution from the uniform one to a concentrated force. The study is
focused on a family of the beams subjected to some selected load cases.

2. Analytical representation of the load

The intensity of the transverse load is originally formulated in the following
form

(2.1) q(ξ) =
k

2 tanh(k/2)

1

cosh2
[
k
(
ξ − 1

2

)] F
L
,

where k – dimensionless parameter (0 < k < ∞), ξ = x/L – dimensionless
coordinate (0 ≤ ξ ≤ 1), and the total transverse load

(2.2) F = L

1ˆ

0

q(ξ) dξ.

Consequently, the transverse shear force

(2.3) T (ξ) = − 1

2 tanh(k/2)
tanh

[
k

(
ξ − 1

2

)]
F,
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and bending moment

(2.4) Mb (ξ) =
1

2k tanh(k/2)
ln

cosh(k/2)

cosh
[
k
(
ξ − 1

2

)]FL.
The expressions (2.1), (2.3) and (2.4) comply with two basic relationships

for beams: q(x) = − dT/drozx, and T (x) = dMb/dx. Generalized load of the
beams includes the load types from uniformly distributed to concentrated force
(three-point bending). The value of the dimensionless parameter k is decisive for
the load type. Example diagrams of the intensity of the transverse load (2.1)
for selected values of the parameter k and unitary load (2.2) (F/L = 1 N/m)
are presented in Fig. 2.

Fig. 2. Diagrams of the intensity of the transverse load (2.1).

Similarly, the diagrams of the shear force (2.3) for selected values of the
parameter k and unitary force (F = 1 N) are presented in Fig. 3.

The diagrams of the bending moment (2.4) for selected values of the param-
eter k and unitary moment (FL = 1 N ·m) are presented in Fig. 4.

It should be noticed that for growing values of the k parameter the plot
becomes similar to the one characteristic for three-point bending, with its max-
imum approaching 0.25.

The mechanical properties of the beam symmetrically vary in the depth di-
rection. The elasticity modules of the beam is formulated in the following form

(2.5) E(η) = E1fe(η), G(η) = G1fg(η),
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where

fe(η) = e0 + (1− e0)
(
6η2 − 32η6

)ke
, fg(η) = g0 + (1− g0)

(
6η2 − 32η6

)ke
,

e0 = E0
E1

, g0 = G0
G1

= 1+ν1
1+ν0

e0, dimensionless parameters, Ej , Gj , νj – material
constants (j = 0 for η = 0 and j = 1 for η = ±1/2), η = y

h – dimensionless
coordinate

(
−1

2 ≤ η ≤
1
2

)
, ke – exponent – natural number.

Fig. 3. Diagrams of the transverse shear force (2.3).

Fig. 4. Diagrams of the bending moment (2.4).

Variability of the elastic constants – Young’s modules (2.5) in the depth
direction of the beam is shown in Fig. 5.
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Fig. 5. Scheme of the variability of the Young’s modules in the depth direction of the beam.

The objective of the study is calculation of the deflections of selected beams
with consideration of the shear effect.

3. Bending of the beam – analytical studies

The nonlinear deformation of a planar cross section – the nonlinear “poly-
nomial” hypothesis is assumed for purposes of analytical modeling of the beam.
Scheme of the nonlinear deformation is shown in Fig. 6.

Fig. 6. Scheme of the nonlinear deformation of a planar cross section of the beam.
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Taking into account the trigonometric nonlinear hypothesis formulated in
[20] the longitudinal displacement of any cross section of the beam takes the
following form

(3.1) u (x, η) = −h
[
η
dv
dx
− fd(η)ψ(x)

]
,

where polynomial function of the planar cross section deformation, analogic to
the trigonometric one [20]

(3.2) fd(η) =
1

1− β

[
1− β

(
3η − 4η3

)ks](
3η − 4η3

)
,

and ψ(x) = u1(x)
h – dimensionless function of the shear effect, β = 1

1+ks
– pa-

rameter, ks – even exponent.
Therefore, the longitudinal and shear strains are as follows

(3.3) εx(x, η) = −h
[
η
d2v

dx2
− fd (η)

dψ
dx

]
, γxy(x, η) =

dfd
dη

ψ (x) ,

where dfd
dη = 3

1−β

[
1−

(
3η − 4η3

)ks] (
1− 4η2

)
– the derivative of the function

(3.2) with consideration of the relation β = 1/(1 + ks).
Consequently, the stresses in accordance with Hooke’s law – expressions (2.5)

and (3.3) are as follows

(3.4)
σx(x, η) = −E1h

[
η
d2v

dx2
− fd (η)

dψ
dx

]
fe (η) ,

τxy(x, η) = G1fg (η)
dfd
dη

ψ (x) .

Integration of the bending moment expressionMb(x) =

ˆ

A

yσx (x, η) dA provides

the following differential equation

(3.5) Cvv
d2v

dx2
− Cvψ

dψ
dx

= −Mb(x)

E1bh3
,

where Cvv =

1/2ˆ

−1/2

η2fe(η) dη, Cvψ =

1/2ˆ

−1/2

ηfe(η)fd(η) dη – dimensionless coeffi-

cients.



450 K. MAGNUCKI, J. LEWINSKI

Similarly, integration of the expression for transverse shear force T (x) =ˆ

A

τxy(x, η) dA gives

(3.6) ψ(x) = 2
1 + ν1
Cψ

T (x)

E1bh
,

where Cψ =

1/2ˆ

−1/2

fg(η)
dfd
dη

dη – dimensionless coefficient.

Taking into account the expression (2.3), the dimensionless function of the
shear effect is in the following form

(3.7) ψ(ξ) = −1 + ν1
Cψ

1

tanh(k/2)
tanh

[
k

(
ξ − 1

2

)]
F

E1bh
.

Integrating the Eq. (3.5) with consideration of the expression (2.4) for bending
moment, one obtains

(3.8) Cvv
dv
L dξ

= C1 +Cvψ ψ(ξ)− 1

2k tanh(k/2)

Fλ2

E1bh

ˆ
ln

cosh(k/2)

cosh
[
k
(
ξ − 1

2

)] dξ,
where λ = L/h – relative length of the beam, C1 – integrating constant.

The angle of rotation dv/L dξ of the axis of the beam and the value of the
function (3.7) at the beam middle (ξ = 1/2) are zero, therefore the integrating
constant

(3.9) C1 =
J1

2k tanh(k/2)

Fλ2

E1bh
,

where

J1 =

1/2ˆ

0

ln
cosh (k/2)

cosh
[
k
(
ξ − 1

2

)] dξ.
Integrating the Eq. (3.8) with consideration of the function (3.7), one obtains

(3.10) Cvvṽ(ξ) =
1

2 tanh (k/2)

{
C2 −

1

k

[
fs (ξ)− λ2fb (ξ)

]} F

E1bh
,

where ṽ(ξ) = v(ξ)/L – relative deflection of the beam,

fs (ξ) = 2 (1 + ν1)
Cvψ
Cψ

ln

{
cosh

[
k

(
ξ − 1

2

)]}
,

fb (ξ) = J1ξ −
¨

ln
cosh (k/2)

cosh
[
k
(
ξ − 1

2

)] dξ2.
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The deflection of the beam in the support point is zero v(0) = 0, therefore, the
integrating constant

(3.11) C2 = 2 (1 + ν1)
Cvψ
Cψ

1

k
ln [cosh (k/2)] .

Thus, the maximal relative deflection of the beam based on the Eq. (3.10) for
ξ = 1/2 is as follows

(3.12) ṽ(analyt)max = max
ks

{
ṽ

(
1

2

)}
,

where

ṽ

(
1

2

)
=

1

2k tanh (k/2)
[1 + kvs]

fvb
Cvv

Fλ2

E1bh
,

fvb =
1

2
J1 −

1/2ˆ

0

ˆ
ln

cosh (k/2)

cosh
[
k
(
ξ − 1

2

)] dξ2,
fvs = 2 (1 + ν1)

Cvψ
Cψ

ln

[
cosh

(
k

2

)]
, kvs =

1

λ2
fvs
fvb

(kvs – the shear coefficient for bending).
Value of the ks parameter is calculated based on the expression (3.12), in

accordance with [20].
Example calculations of the relative deflection ṽ

(analyt)
max and the shear coef-

ficient for bending kvs are carried out for a beam family of selected sizes and
material constants. The sizes of the cross section are b = 50 mm, h = 60 mm,
material constants (Szyniszewski et al. [22]) E1 = 200 GPa, E0 = 3150 MPa,
ν1 = 0.3, ν0 = 0.05, and the load-force F = 5 kN. The results of the calculations
are specified in Tables 1–3. The calculated value of the exponent ks = 2 (3.12).

Table 1. Values of maximal relative deflection of the beam and shear coefficient for uniformly
distributed load (k = 1/50).

λ

10 15 20 25

ke = 2 ṽ
(analyt)
max 0.0002560 0.0005225 0.0008950 0.001374

kvs 0.202 0.0898 0.0505 0.0323

ke = 7 ṽ
(analyt)
max 0.0004587 0.0008809 0.001472 0.002232

kvs 0.358 0.159 0.0895 0.0573

ke = 30 ṽ
(analyt)
max 0.0007806 0.0015730 0.0026830 0.004110

kvs 0.231 0.103 0.0578 0.0370
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Table 2. Values of maximal relative deflection of the beam and shear coefficient
for non-uniformly distributed load (k = 4).

λ

10 15 20 25

ke = 2 ṽ
(analyt)
max 0.0003377 0.0006858 0.001173 0.001800

kvs 0.212 0.0944 0.0531 0.0340

ke = 7 ṽ
(analyt)
max 0.0006079 0.001160 0.001933 0.002927

kvs 0.376 0.167 0.0940 0.0602

ke = 30 ṽ
(analyt)
max 0.001031 0.002067 0.003519 0.005384

kvs 0.243 0.108 0.0607 0.0388

Table 3. Values of maximal relative deflection of the beam and shear coefficient
for three-point bending (k = 100).

λ

10 15 20 25

ke = 2 ṽ
(analyt)
max 0.0004255 0.0008512 0.001447 0.002213

kvs 0.249 0.111 0.0623 0.0399

ke = 7 ṽ
(analyt)
max 0.0007786 0.001454 0.002399 0.003615

kvs 0.441 0.196 0.110 0.0706

ke = 30 ṽ
(analyt)
max 0.001303 0.002571 0.004345 0.006627

kvs 0.285 0.127 0.0712 0.0456

It should be noticed that, the shear effect kvs in bending of the beams declines
with increasing length λ of the beam. The shapes of symmetrical variability of
the Young’s modules (2.5) for selected values ke assumed in the studies are shown
in Fig. 7.

a) b) c)

Fig. 7. Diagrams of variability of the Young’s modules (2.5) for selected values ke:
a) ke = 2, b) ke = 7, c) ke = 30.
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The shape of symmetrical variability of the Young’s modules controlled by
the value of the parameter ke significantly affects the value of the shear effect kvs
in bending. This influence on the shear effect in bending is graphically presented
in Fig. 8.

Fig. 8. Diagrams of the shear coefficient kvs as a function of the exponent ke (λ = 10).

The maximal value of the shear effect in bending of the beams with sym-
metrically varying mechanical properties occurs for the value of the exponent
ke = 7.

Particular case of the beam with symmetrically varying mechanical properties
is the homogeneous beam. The mechanical properties (2.5) for this case are as
follows: E1 = E, G1 = G, ν0 = ν1 = ν, e0 = g0 = 1, ke = 0. Moreover, the
polynomial function of the planar cross section deformation (3.2) (ks = 0) is in
the following form

(3.13) fd(η) =
(
3− 4η2

)
η.

Consequently, values of the dimensionless coefficients of the Eq. (3.5) are as
follows: Cvv = 1/12, Cvψ = 1/5 and Cψ = 2. Therefore, the Eq. (3.5) is in the
form

(3.14)
d2v

dx2
− 12

5

dψ
dx

= −Mb (x)

EJz
,

where Jz = bh3/12 – inertia moment of the cross section of the beam.
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The dimensionless function of the shear effect (3.6) is as follows

(3.15) ψ(x) = (1 + ν)
T (x)

A
,

where A = bh – area of the cross section of the beam.
Thus, the maximal relative deflection of the beam with consideration of the

expressions (2.3) and (2.4) is in the form

(3.16) ṽ(hom)
max =

6f
(hom)
vb

k tanh (k/2)

[
1 + k(hom)

vs

] Fλ2
Ebh

,

where

f
(hom)
vb = fvb =

1

2
J1 −

1/2ˆ

0

ˆ
ln

cosh (k/2)

cosh
[
k
(
ξ − 1

2

)] dξ2,
f (hom)
vs =

1 + ν

5
ln

[
cosh

(
k

2

)]
,

k
(hom)
vs = 1

λ2
f
(hom)
vs

f
(hom)
vb

– the shear coefficient for bending.

Example calculations of the relative deflection ṽ(hom)
max and the shear coefficient

for bending k(hom)
vs are carried out for a beam family of selected sizes and material

constants. The sizes of the cross section are b = 50 mm, h = 60 mm, material
constants E = 200 GPa, ν = 0.3, and the load-force F = 5 kN. The results of
the calculations are specified in Table 4.

Table 4. Values of maximal relative deflection and shear coefficient
of the homogeneous beam.

λ

10 15 20 25

k = 1/50 ṽ
(analyt)
max 0.0001335 0.0002962 0.0005241 0.0008171

kvs 0.0250 0.0111 0.00624 0.00399

k = 4 ṽ
(analyt)
max 0.0001748 0.0003876 0.0006856 0.001069

kvs 0.0262 0.0117 0.00656 0.00420

k = 100 ṽ
(analyt)
max 0.0002146 0.0004749 0.0008394 0.001308

kvs 0.0308 0.0137 0.00770 0.00493

For the classical Euler-Bernoulli beam theory (without the shear effect), the
relative deflection (3.16) is in the following form

(3.17) ṽ(hom)
max = k(E−B)

v

FL2

EJz
,
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where

k(E−B)
v =

f
(hom)
vb

2k tanh (k/2)

is bending coefficient.
The values of this bending coefficient are k(E−B)

v,1/50 = 0.013021 ≈ 5/384 for

uniformly distributed load (k = 1/50) and k(E−B)
v,100 = 0.02082 ≈ 1/48 for three-

point bending (k = 100).
The proposed model of the beam subjected to generalized load with symmet-

rically varying mechanical properties and the hypothesis of planar cross section
deformation enable to assess the shear effect arising while beam bending. The
theory also includes the case of homogeneous beams.

4. Conclusions

The proposed generalized load controlled by the k parameter includes the
whole range of the loads – from uniformly distributed to the concentrated one
(three-point bending) – that is effective in studying bending of the beams.

Variation of the mechanical properties is controlled by ke parameter (2.5). In
case of ke = 0 the structures is homogeneous, while for growing ke the mechanical
property pattern approaches the sandwich, i.e. three-layer structure. In case of
the beam data adopted for the above example calculation the shear effect takes
its maximum for ke = 7 (Fig. 8).

The nonlinear “polynomial” hypothesis is controlled by the ks parameter
(Fig. 6). The ks value is determined in result of maximization of the deflection
(3.12).

In particular case of the beam model presented in the paper converts itself
to the classical Euler-Bernoulli beam theory without the shear effect.
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