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The paper presents the results of experimental tests and numerical simulations related with
the strength differential effect. Tensile and compression tests on 2CrMoV low-alloy steel are
performed to evaluate the magnitude of the yield stress difference in tension and compression.
The strength differential parameter is then used in the formula for equivalent stress proposed by
Burzyński. The material effort calculated using Burzyński and Huber-Mises-Hencky hypotheses
was compared for different start-stop cycles. Analytical notch stress-strain correction rules by
Neuber and Glinka-Molski were applied to compute elastic-plastic strain amplitudes in rotor
circumferential grooves. It was finally shown that the strength differential effect has significant
influence on the predicted fatigue life under thermo-mechanical loading.
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1. Introduction

A bulk of mechanical integrity analyses of machinery components employ the
classical Huber-Mises-Hencky plasticity theory to define the equivalent stress and
describe the plastic response of materials [1]. This theory assumes that the mean
stress has no effect on plastic flow and the material is incompressible in the plastic
regime. The classical definition of equivalent stress based on the second invariant
of the deviatoric stress tensor J2 neglects the strength differential effect, i.e. the
difference of yield stresses in tension and compression, which was experimentally
found in many materials [2]. For materials exhibiting this effect, a better match
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of theoretical predictions with experimental stress-strain curves was found when
the Burzyński yield condition was applied. According to the Burzyński hypoth-
esis, the measure of material effort defining the limit of elastic range is a sum
of the density of distortion elastic energy and a part of density of dilation elastic
energy [3, 4]. The first contribution is related to the Huber-Mises-Hencky (HMH)
equivalent stress, while the second part is a mean stress dependent. An extension
of the Burzyński hypothesis accounting for the third invariant of stress tensor
was proposed in [5, 6]. In this formulation the contribution of the density of elas-
tic energy of distortion in material effort is controlled by the Lode angle. The
recent application of the Burzyński-Drucker-Prager yield function with different
friction angles to large strain thermoplasticity is presented in [7].

Vadillo et al. [1] simulated tensile tests on notched specimens of the 2024 T3
aluminium alloys as well as tests on the thin-walled tubes of Inconel 718 sub-
jected to torsion after tension and compression. The comparison of numerical
predictions with the experimental results revealed better correlation with exper-
imental data of the plasticity theory with the Burzyński yield condition than that
based on the Huber-Mises-Hencky criterion. The authors generally concluded
that the plasticity theory with the paraboloid yield condition can adequately
describe the strength differential (SD) effect present also in other materials, as
e.g. high strength alloys or polymers.

Banaś and Badur [8] analysed a turbine guide vane from helicopter engine
made of Inconel 718 assuming constant strength differential parameter k = 1.1
(at room temperature) due to the lack of experimental data. Conjugate heat
transfer analysis was performed to obtain the temperature field, and elasto-
plastic stress analysis was then carried out using boundary conditions obtained
from the CFD (computational fluid dynamics) analysis. The maximum differ-
ence in equivalent stress of 10% was found between the two failure criteria, i.e.
Burzyński and Huber-Mises-Hencky.

The aim of the present work is to investigate the existence of strength differ-
ential effect in 2CrMoV creep-resistant steel used for high-temperature steam
turbine rotors. Mechanical tests at room temperature were carried out and
the obtained strength differential parameter was further used in stress analy-
ses. Analytical notch stress-strain correction methods were applied to obtain
strain amplitudes in elastic-plastic conditions. Finally, the low-cycle fatigue lives
predicted using different definitions of equivalent stress and different strain cor-
rection methods were compared.

2. Burzyński yield condition

Burzyński [3, 4] proposed an energy-based hypothesis of material effort for
materials which reveal difference in the failure strength in tension and compres-
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sion. The hypothesis assumes the measure of material effort as a sum of the
density of elastic energy of distortion and a part of density of elastic energy of
the volume change. This statement is mathematically expressed as [9, 10]:

(2.1) Φf + η Φv = K,

where the parameter η = ω + δ
3σm

depends on the material parameters ω and δ
representing the contribution of the density of elastic energy of the volume change
depending on the mean stress σm = 1

3σii. The constant K corresponds to the
value of elastic energy density in a limit state.

Defining the density of elastic energy of distortion as [2]

(2.2) Φf =
1

12G

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]
and the density of elastic energy of the volume change as [2]

(2.3) Φv =
1− 2ν

12G(1 + ν)
(σ1 + σ2 + σ3)2.

Introducing the above definitions of energy densities into Eq. (2.1) yields
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12G(1+ν̃) , and σe is the Huber-Mises-Hencky equiv-

alent stress. The triplet (ω, δ, K) is substituted by Burzyński by the triplet
(σCy , σTy , σSy ) which is obtained from commonly performed strength tests: σCy –
yield stress in compression, σTy – yield stress in tension and σSy – yield stress in
torsion. This leads to the following form of the yield condition [1]:
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σm − σCy σTy = 0.

This equation describes the plasticity surface in the space of principal stresses
and its shape depends on the relation between the yields stresses (σCy , σTy , σSy ).
For 3σSy > σCy σ

T
y the plasticity surface has the shape of an ellipsoid, for

3σSy < σCy σ
T
y the surface is a hyperboloid, while in case 3σSy = σCy σ

T
y the sur-

face has the shape of a paraboloid of revolution [11, 12]. In this particular case
Eq. (2.5) simplifies to the form:

(2.6) σ2
e + 3

(
σCy − σTy

)
σm − σCy σTy = 0.
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Equation (2.6) represents a parabola in the plane (σe, σm). After solving it
with respect to σTy and extracting a positive root, the final form of Burzyński
yield condition is obtained [8]:

(2.7) F (σe, σm) =
1

2k

[
3(k − 1)σm +

√
9(k − 1)2σ2

m + 4kσ2
e

]
− σTy = 0.

The Burzyński equivalent stress has thus the following form [8]

(2.8) σB =
1

2k

[
3(k − 1)σm +

√
9(k − 1)2σ2

m + 4kσ2
e

]
.

In the particular case when k = 1 (no strength differential effect present), the
Burzyński equivalent stress is equal to the classical Huber-Mises-Hencky stress.

3. Laboratory tests of 2CrMoV steel

High-temperature rotors operating at temperature below 540◦C are usually
made of 2CrMoV creep-resistant steel of the bainitic microstructure. Test data
showing the magnitude of strength differential in tension and compression are not
available, so to evaluate this quantity laboratory tests on material samples were
required. Round specimens made from this steel were used in uniaxial tensile and
compression tests conducted at room temperature. Tensile tests were performed
on 6 specimens having gauge length L0 = 35 mm and diameter d0 = 7 mm
(Fig. 1a). For compression tests also 6 specimens of gauge height h0 = 18 mm
and diameter d0 = 12 mm were prepared (Fig. 1b). The main dimensions of
tensile and compression specimens are given in Table 1 and 2, respectively.

a) b)

Fig. 1. Tensile (a) and compression (b) test specimens.

Table 1. Main dimensions of tensile specimens.

Specimen No T1 T2 T3 T4 T5 T6
L0 [mm] 35.00 35.00 35.00 35.00 35.00 35.00
d [mm] 7.00 7.01 7.00 7.01 6.99 6.99
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Table 2. Main dimensions of compression specimens.

Specimen No C1 C2 C3 C4 C5 C6
d [mm] 12.01 12.05 12.05 12.06 12.07 12.02
L0 [mm] 18.05 18.05 18.05 18.05 18.05 18.05

Figure 2a presents pictures of tensile specimens after fracture together with
detailed views of the fracture surfaces. All six specimens fractured at approxi-
mately the same section and the fracture surfaces had similar appearance typical
for a ductile fracture with cup and cone features. Figure 2b shows the compres-
sion specimens at the end of the test with characteristic barreling typical for
specimens with L/d < 2.

a) b)

Fig. 2. Tensile (a) and compression (b) test specimens after failure.

As a result of testing, six stress-strain curves for tension and compression
were obtained and they are shown in Fig. 3. The shape of all curves is similar
and shows no irregularities which could indicate the presence of material flaws
or imperfections. Little scatter of test data was observed in the plastic parts
of the stress-strain curves. The yield stresses in tension and compression are
given in Table 3 together with their scatter and mean values. The scatter of
the yield stresses was approximately 20 MPa which is less than 3% of the mean
values. As it is seen from the table, the average yield stress in compression is
visibly higher than that in tension and their difference is around 10% which
is 3 times higher than the scatter of yield stresses.
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a)

b)

Fig. 3. Stress-strain curves for 6 tensile (a) and compression (b) specimens at 20◦C.

Table 3. Yield stresses in tension and compression.

Specimen No 1 2 3 4 5 6 Scatter Mean value
Tension [MPa] 732.8 734.3 725.8 728.1 723.9 715.3 19.0 726.7

Compression [MPa] 785.8 801.7 797.7 804.9 808.2 792.5 22.4 798.5
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Based on the individual stress-strain curves, average curves at tension and
compression were derived and are presented in Fig. 4 which clearly shows sig-
nificant differences between the two curves in plastic conditions. The average
yield stress at tension was σTy = 727 MPa, while at compression reached σCy =
798 MPa, which results in their ratio of k = 1.1. This value of strength differen-
tial was adopted in further numerical investigations. Recent results of laboratory
tests carried out at high temperatures show that the value of k is almost constant
and close to 1.1 which confirms the validity of results and conclusions drawn in
this work.

Fig. 4. Average stress-strain curves of 2CrMoV steel at tension and compression.

The Burzyński yield stress curve according to Eq. (2.7) is compared in Fig. 5
with the Huber-Mises-Hencky yield line for the analysed 2CrMoV steel. Both
yield stresses have the same values equal to the yield stress in tension for the
mean stress σm = 1

3σ
T
y = 242.2 MPa. For higher mean stresses, the Burzyński

yield stress becomes lower than the Huber-Mises-Hencky stress, and for lower
mean stresses it is higher. For zero mean stress, the Burzyński yield stress is equal
to the geometric average of the yield stress in tension and compression. For the
mean stress σm = −1

3σ
C
y , the Burzyński yield stress is equal to the yield stress in

compression. The major observation is that in compression and in a significant
part of tension, the strength differential has a positive effect on material effort
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expressed by increased yield stress according to Burzyński comparing with the
Huber-Mises-Hencky yield stress.

Fig. 5. Burzyński yield stress curve at 20◦C.

4. Notch stress-strain correction methods

Thermoelastic notch stresses in the areas of fatigue cracking exceed the mate-
rial yield stress and consideration of elastic-plastic material response is crucial for
a proper estimation of fatigue life. Cyclic plasticity models are best suited for this
purpose, but for preliminary studies analytical stress-strain correction methods
can be successfully applied. The most commonly used methods for elastic-plastic
stress-strain correction basing on the elastic solution are Neuber’s rule [13] and
the Glinka-Molski equivalent strain energy density method [14]. In case of multi-
axial state of stress and strain, the extended Neuber rule is used [15]:

(4.1) σeεe = σele ε
el
e ,

where σe – equivalent stress, εe – equivalent strain, σele – equivalent stress ob-
tained from elastic solution, εele – equivalent strain obtained from elastic solution.
The equivalent strains are defined using mechanical strain components.

Similarly, the Glinka-Molski method was extended for multi-axial state of
stress using the definition of strain energy density [16]:

(4.2)
1

2
σele ε

el
e =

εeˆ

0

σe dεe.
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Graphical interpretation of both methods for elastic-linear strain hardening
material is given in Figs 6 and 7. The Neuber rule (Fig. 6) assumes the equality
of the total strain energy density at the notch tip in elastic (grey area under
σele − A − εele curve) and elastic-plastic states (shaded area under σe − B − εe
curve). The total strain energy density is defined as the sum of the strain energy
density and the complementary strain energy density.

Fig. 6. Graphical interpretation Fig. 7. Graphical interpretation
of the Neuber rule. of the Glinka-Molski method.

The Glinka-Molski method (Fig. 7) assumes the equality between the strain
energy density at the notch tip of a linear elastic body (grey area under elastic
curve under σele −εele ) and the strain energy density at the notch tip of a geomet-
rically identical elastic-plastic body (grey area under elastic-plastic stress-strain
curve σe − εe) subjected to the same load.

The formulations of Neuber’s rule and Glinka-Molski’s method given by
Eqs (4.1) and (4.2) are based on the definitions of equivalent stress and strain
according to Huber-Mises-Hencky hypothesis, and neglect the contribution of
dilatation energy representing the influence of mean stress [17]. In case when
the Burzyński equivalent stress definition is applied, which includes the effect
of mean stress, the contribution of dilatation energy is implicitly modelled by
the equivalent stress, and the use of formulations based on equivalent stress and
strain (Eqs (4.1) and (4.2)) is better justified than for the case of the Huber-
Mises-Hencky equivalent stress.

Recalling the definition of the equivalent stress σe expressed by the deviatoric
stress components sij [18]:

(4.3) σe =

√
3

2
sijsij ,
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and the equivalent strain εe is defined by the deviatoric strain components eij
with energy conjugate strain definition:

(4.4) εe =

√
2

3
eijeij .

For proportional loading conditions and multiaxial state of stress, the equiva-
lent strain can be expressed as a sum of equivalent elastic strain εele and equivalent
plastic strain εple [19]

(4.5) εe = εele + εple .

The equivalent elastic strain is defined as

(4.6) εele =
1

3G
σe,

where G is shear modulus, and the equivalent plastic strain in a linear kinematic
model can be expressed as

(4.7) εple =
1

C
(σe − σy),

where σy is material proof stress, and C is a kinematic hardening parameter.
For cyclic stress-strain analysis, Eqs (4.1) and (4.2) are re-written for the

corresponding stress and strain amplitudes [20, 21]

σe,aεe,a = σele,aε
el
e,a,(4.8)

1

2
σele,aε

el
e,a =

εe,aˆ

0

σe,a dεe,a.(4.9)

The above two equations were used to determine elasto-plastic strain am-
plitudes at the notch tip based on the stress and strain histories obtained from
elastic material response.

Equations (4.8) and (4.9) can be transformed to quadratic equations us-
ing the strain definitions (4.5)–(4.7) under the assumption of linearly kinematic
hardening material and proportional loading conditions [22]:
• for the Neuber rule:

(4.10) Cε2
e,a +

(
σy −

1

3G
Cσy

)
εe,a −

1

3G

(
σele,a

)2
= 0,
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• for the Glinka-Molski method:

(4.11) Cε2
e,a +

(
2σy −

2

3G
Cσy

)
εe,a

+
1

9G2

[
C(σy)

2 − 3G(σele,a)
2 − 3G(σy)

2
]

= 0.

The above two equations can be solved analytically by means of the discrim-
inant method to obtain the strain amplitudes in the elastic-plastic state εeq,a.
The existence of analytical solutions for strain amplitude is very important from
the perspective of practical application to fatigue life analysis. Analytical expres-
sion for the strain amplitude can be used in lifetime calculations when a large
number of cycles is to be analysed or for online monitoring of fatigue damage.
These two formula are employed in the next section in investigations of fatigue
life of a steam turbine rotor.

5. Stress and lifetime analysis of a steam turbine rotor

The material effort of a steam turbine rotor subject to thermo-mechanical
loading was investigated by performing transient finite element analysis using
Abaqus program [23]. A linear elastic material model was adopted together
with temperature-dependent material properties and nonlinear thermal bound-
ary conditions varying in time and space. The material physical properties in
thermal (conductivity, specific heat) and mechanical (Young modulus, thermal
expansion coefficient, Poisson ratio) analysis were provided in a tabular form for
temperature varying from 20◦C to 550◦C and used by the program as a piece-
wise linear function. The de-coupled thermo-elasticity problem was solved: tem-
perature distribution in the rotor was obtained by solving the Fourier-Kirchhoff
equation written in cylindrical co-ordinate system for the rotor axisymmetric ge-
ometry and based on the temperature field, stress and strain distributions were
obtained in the second step. The rotor temperature and Huber-Mises-Hencky
stress distributions during a cold start are shown in Fig. 8. The rotor temper-
ature distribution (Fig. 8a) is highly non-uniform and exhibits radial and axial
temperature gradients induced by axial gradients of steam temperature and heat
transfer coefficient. The rotor thermomechanical stress field is generally more
uniform (Fig. 8b) but very small areas of high stress concentration are found
in the circumferential grooves acting as geometrical notches (shown for example
as G1, G3 and G6). The grooves are located in the hottest region of the rotor
and peak stresses occur at the bottom of the grooves (notch tip). At the notch
tip the stress can exceed the material initial yield stress and significant plastic
deformation can occur in a very tiny zone [24].
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a)

b)

Fig. 8. Rotor temperature (a) and equivalent stress distribution (b) during a cold start.

Variations in time of the mean stress and the equivalent stresses evaluated
at the circumferential U-groove G3 using both Burzyński and Huber-Mises-
Hencky hypotheses are shown in Fig. 9. The Huber-Mises-Hencky and mean
stress is taken directly from Abaqus analysis while the Burzyński equivalent
stress is post-processed based on these two stresses using the formula (2.8).
It presents stress variations for complete start-stop cycles, where the start-up
phase is accompanied by rotor heating-up generating compressive stress at the
surface, and the subsequent shutdown resulting in cooling-down and tensile sur-
face stress. The Burzyński stress was calculated assuming constant temperature-
independent yield stress ratio k = 1.1. For all three considered start-stop cycles,
during heating the Huber-Mises-Hencky stress is visibly higher than that ob-
tained with the Burzyński hypothesis. In this phase, the mean stress is negative
and lower than 1/3σe, but when it exceeds this limit, the Burzyński stress be-
comes slightly higher. The operation phase when the mean stresses are negative
corresponds to the rotor heating-up, while the positive mean stresses are present
in steady-state and during cooling-down phase. Thus, high compressive stress
states reduce the material effort and due to the strength differential effect allow
for higher HMH stresses during heating-up without adversely affecting the rotor
material effort. This is of high practical importance as the rotor heating-up takes
place during turbine start-up and more accurate determination of the equiva-
lent stress can allow for better utilization of material strength and results in
a reduction of the start-up time.
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a)

b)

c)

Fig. 9. Variations of stresses and stress ratio for the cold (a), warm (b) and hot (c) start cycle.
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It is also observed that the stress ratio at the groove is relatively constant
during rotor heating-up and for all three starts varies within 0.86–0.88. A con-
siderable increase of the stress ratio takes place when the state of stress changes
from compression into tension causing it to raise above 1 at the instant of peak
tensile stress during shutdown.

The Neuber rule and the Glinka-Molski method described in Sec. 4 were
adopted for thermo-elasto-plastic strain analysis. The equivalent stress in elas-
tic state was evaluated using Burzyński and Huber-Mises-Hencky hypotheses
and then used to obtain the strain amplitude in the elastic-plastic condition by
solving Eqs (4.10) and (4.11). The temperature-dependent yield stress σy(T ) was
used in calculations to take into account high variations of temperature occurring
during start-ups. The temperature-dependent yield stress was adopted from the
available material card for this steel and taking into account the cyclic softening
factor equal 0.8. The minimum value of 0.2% proof stress (i.e. stress to produce
0.2% plastic strain) was approximated by a 6th order polynomial of temperature
and used in Eqs (4.10) and (4.11) to obtain analytically strain amplitudes. The
results are presented in Fig. 10 showing the relation between strain amplitudes
computed using the two analysed equivalent stress definitions applied to different
start-up cycles. The strain amplitudes obtained using Burzyński hypotheses are
in all cases lower than those calculated on the basis of the Huber-Mises-Hencky
yield condition (all points lie below the 1:1 proportionality line). It was also
found that the Glinka-Molski method predicts lower strain amplitudes than the
Neuber rule which is in agreement with the previous studies [25]. The minimum
strain amplitude ratio of 0.9 (strain amplitude from Burzyński hypothesis di-
vided by the corresponding amplitudes from Huber-Mises-Hencky hypotheses)
was obtained for the hot start (HS) using the Neuber rule, while the maximum
ratio was obtained for the cold start (CS) when the Glinka-Molski strain correc-
tion method was applied.

Fig. 10. Strain amplidues obtained for different cycles using Neuber and Glinka-Molski method.
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Extreme values of the stress ratio for each transient event are summarized in
Table 4. Both the extreme values in the event and the values at stress maximum
are similar for all start-up types. For the shutdown phase the extreme values are
less variable and are approximately 1.

Table 4. Equivalent stress ratios for different transient events.

Event type Minimum in event Maximum in event At maximum stress
Cold start 0.862 1.005 0.878
Warm start 0.862 1.009 0.878
Hot start 0.865 1.009 0.877
Shutdown 0.998 1.029 1.029

The number of cycles to crack initiation was evaluated by using the strain-life
method and the low-cycle fatigue data with hold time accounting for the creep
damage due to secondary loading [17]. The results of fatigue life predicted using
the analysed equivalent stress definitions and stress-strain correction methods are
compared in Fig. 11. In case of the number of cycles, the values obtained using
Burzyński hypotheses are above those calculated on the basis of the Huber-Mises-
Hencky yield condition (all points lie above the 1:1 line). The maximum ratio of
the number of cycles equal 2.11 was obtained for the hot start using the Neuber
rule, while the minimum ratio of 1.07 was predicted for the cold start when the
Glinka-Molski method was used. This is a considerable scatter of fatigue life, in
particular for the hot start cycle where the lowest values of fatigue endurances
were predicted. The results of investigations clearly show considerable differences
in fatigue lives obtained using both methods and indicate the beneficial effect of

Fig. 11. Number of cycles to cracking obtained for different cycles
using Neuber and Glinka-Molski method.
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the mean stress preferring the use of Burzyński yield condition when significant
compressive state of stress persists.

6. Summary

The existence of strength differential effect in 2CrMoV rotor steel was proved
experimentally and its positive effect on the material effort was shown by nu-
merical simulations of the rotor during transient operating conditions. The mea-
sured magnitude of the strength differential k = 1.1 results in the equivalent
stress ratio reaching a minimum of 0.86 at the circumferential U-groove during
the compressive phase of the cycle. Elastic-plastic strain amplitudes evaluated
using analytical stress-strain correction methods were found to be lower when
the strength differential effect was included in the yield condition as compared
with the predictions of the classical J2 plasticity theory. The minimum strain
amplitude ratio of 0.9 obtained for the hot start-stop cycle resulted in a more
than 2 times longer fatigue life. This demonstrates that the use of the Burzyński
hypothesis allows for better utilization of material strength or fatigue life exten-
sion provided that the strength differential effect is experimentally confirmed.
The high difference in fatigue lives obtained using both methods indicates the
beneficial effect of the mean stress preferring the use of the Burzyński yield
condition when significant compressive state of stress persists.

The results presented in this paper should be considered as an initial outcome
of the investigations showing only a potential for improvement in the analyses of
material effort and lifetime of steam turbine rotors. Continued material tests are
on-going with the aim to investigate the variation of strength differential with
temperature. The next steps of the research will be to carry out cyclic tension-
compression tests in a range of temperatures and implement the Burzyński yield
criterion in the finite element programme to describe more accurately the stress-
strain state in elastic-plastic conditions.
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