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Vibration characteristics of laminated composite stiffened hypar (hyperbolic paraboloid
shell bounded by straight edges) with cut-out are analysed in terms of natural frequency and
mode shapes. A finite element code is developed for the purpose by combining an eight noded
curved shell element with a three noded curved beam element for stiffener. Finite element
formulation is based on first order shear deformation theory and includes the effect of cross
curvature. The isoparametric shell element used in the present model consists of eight nodes
with five degrees of freedom per node while beam element has four degrees of freedom per
node. The code is validated by solving benchmark problems available in the literature and
comparing the results. The generalised Eigen value solution is chosen for the un-damped free
vibration analysis. New results are presented for first five modes of natural frequency by varying
boundary conditions, ply orientation and curvature of the shell. The results furnished here may
be readily used by practicing engineers dealing with stiffened composite hypars with cut-outs.

Key words: free vibration; laminated composite; stiffened hypar shell; cut-out; first five
modes.

Notations

a, b – length and width of shell in plan,
a′, b′ – length and width of cut-out in plan,
bst – width of stiffener in general,

bsx, bsy – width of X and Y -stiffeners respectively,
Bsx, Bsy – strain displacement matrix of stiffener element,

c – rise of hypar shell,
dst – depth of stiffener in general,

dsx, dsy – depth of X and Y -stiffeners respectively,
{de} – element displacement,

e – eccentricity of stiffeners with respect to mid surface of shell,
esx, esy – eccentricities of X and Y -stiffeners with respect to mid surface of shell,



76 S. SAHOO

E11, E22 – elastic moduli,
G12, G13, G23 – shear moduli of a lamina with respect to 1, 2 and 3 axes of fibre,

h – shell thickness,
Msxx, Msyy – moment resultants of stiffeners,

Mx, My – moment resultants of shell,
Mxy – torsion resultant,
np – number of plies in a laminate,

nx, ny – number of stiffeners along X and Y directions respectively,
N1–N8 – shape functions,
Nx, Ny – inplane force resultants,

Nsxx, Nsyy – axial force resultants of stiffeners,
Nxy – inplane shear resultant,

Qx, Qy – transverse shear resultant,
Qsxxz, Qsyyz – transverse shear resultants of stiffeners,

Rxy – radii of cross curvature of hypar shell,
Tsxx, Tsyy – torsion resultants of stiffeners,

u, v, w – translational degrees of freedom,
usx, wsx – axial and transverse translational degrees of freedom at each node of

X-stiffener element,
vsy, wsy – axial and transverse translational degrees of freedom at each node of

Y -stiffener element,
x, y, z – local co-ordinate axes,

X, Y , Z – global co-ordinate axes,
zk – distance of bottom of the kth ply from mid-surface of a laminate,

α, β – rotational degrees of freedom,
αsx, βsx – rotational degrees of freedom at each node of X-stiffener element,
αsy, βsy – rotational degrees of freedom at each node of Y -stiffener element,
δsxi, δsyi – nodal displacement of stiffener element,
εx, εy – inplane strain component,

γxy, γxz, γyz – shearing strain components,
ν12, ν21 – Poisson’s ratios,
ξ, η, τ – isoparametric co-ordinates,

ρ – density of material,
σx, σy – inplane stress components,

τxy, τxz, τyz – shearing stress components,
ω – natural frequency,

ω – non-dimensional natural frequency; ω = ωa2
(
ρ/E22h

2
)1/2.

1. Introduction

Laminated composite shell structures characterized by high strength to weight
ratio and reduced dead weight are used in different structures of many engineer-
ing fields like civil, mechanical, aerospace and others. In civil engineering applica-
tion laminated composite shells are used as roofing units as these can cover large
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column free areas. Among the different shell configurations, hypar shell (hyper-
bolic paraboloid shell bounded by straight edges) is very popular as roofing units
due to their aesthetic elegance (Fig. 1). The shell surface being doubly ruled, it
is very easy to construct and construction becomes faster. Roof structures are
sometimes provided with cutout to allow entry of light, venting and to provide
accessibility of parts of the structures, and also to alter the resonant frequency.
Shells with cutout, stiffened along the margin are an efficient way to enhance
the stiffness of the structure without adding much mass. These stiffeners slightly
increase the structure weight but have effect on structural strength and stability.
In practice, shell roofs may have different combinations of boundary conditions
and a comprehensive study of free vibration characteristics of such structures is
of practical interest.

Fig. 1. Surface of a skewed hypar shell with cut-out. Surface equation: z = 4c
ab

(
x− a

2

) (
y − b

2

)
.

Some of the earlier information regarding the behavior of doubly curved
composite shells [1, 2] considered the practical boundary condition like corner
point support and presented the frequency and mode shapes of spherical, circu-
lar cylindrical and hyperbolic paraboloidal (bounded by parabolas) shells. Liew
et al. [3] analyzed plates and shells for bending, buckling and vibration behavior
using a super element. Point supported boundary conditions were also consid-
ered [4, 5]. Qatu and Leissa [6, 7] studied the free vibration behavior of doubly
curved laminated composite shallow shells. Qatu and Leissa [8], and Sivasub-
ramonian et al. [9] studied the free vibration characteristics of doubly curved
panels considering combinations of different boundary conditions. Liew and his
colleagues [10–19] carried out extensive research work on the vibrations of differ-
ent types of shell surfaces. The developments in the vibration of shallow shells
reviewed in an excellent paper by Liew et al. [20]. The fundamental frequencies
of hypar shells with different boundary conditions were also reported [21, 22].
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Pradyumna and Bandyopadhyay [23] reported the vibration characteristics
of composite hypar shells based on HSDT but they did not considered higher
modes, hence further improvement in these results have to be sought.

In this field of shell research, large number of research articles [24–37] is
available. Free vibration aspects of stiffened shell panels with cut-out for six
shell forms, viz., cylindrical, elliptic paraboloid, hyperbolic paraboloid, hypar,
conoid and spherical shells have been studied using finite element method [38–
44]. But analysis of stiffened shell with cut-out for modes of vibration other
than fundamental mode are scanty in the literature. Though Topal [45], Srini-
vasa et al. [46] presented the mode frequency analysis of laminated spherical
shell but they did not consider hypar shells. Despite the engineering importance
of cut-outs involved in composite panels, the number of research articles and
reports in the subject topic are found to be limited. Some recent studies have
addressed advanced aspects such as stochastic natural frequencies [47]. However,
it is observed that there is no literature available on free vibration analysis of
composite stiffened hypar shells with cut-out for other natural modes. In view
of the above, a finite element model has been used in the present study for free
vibration analysis of composite stiffened hypar shell with cut-out for first five
natural modes. The analysis has been performed considering shallow shell as-
sumptions. The effect of cross curvature is also included in the formulation. The
present finite element model based on first order shear deformation theory is
applied to solve many practical problems of laminated composite stiffened hy-
par shells considering different boundary conditions, laminations and curvature
of shell.

2. Mathematical formulation

A laminated composite hypar shell of uniform thickness h (Fig. 1) and radius
of cross curvature Rxy is considered. Keeping the total thickness the same, the
thickness may consist of any number of thin laminae each of which may be
arbitrarily oriented at an angle θ with reference to the X-axis of the co-ordinate
system. The constitutive equations for the shell are given by (a list of notations
is separately given):

(2.1) {F} = [E]{ε},

where
{F} =

{
Nx, Ny, Nxy, Mx, My, Mxy, Qx, Qy

}T
,

[E] =

 [A] [B] [0]

[B] [D] [0]

[0] [0] [S]

, {ε} =
{
ε0
x, ε

0
y, γ

0
xy, kx, ky, kxy, γ

0
xz, γ

0
yz

}T
.



CHARACTERISTICS OF VIBRATING COMPOSITE STIFFENED HYPARS. . . 79

The force and moment resultants are expressed as

(2.2)
{
Nx, Ny, Nxy, Mx, My, Mxy, Qx, Qy

}T

=

h/2ˆ

−h/2

{
σx, σy, τxy, σz.z, σy.z, τxy.z, τxz, τyz

}T dz.

The submatrices [A], [B], [D] and [S] of the elasticity matrix [E] are func-
tions of Young’s moduli, shear moduli and the Poisson’s ratio of the laminates.
They also depend on the angle which the individual lamina of a laminate makes
with the global X-axis. The detailed expressions of the elements of the elastic-
ity matrix are available in several references including Vasiliev et al. [48] and
Qatu [49].

The strain-displacement relations on the basis of improved first order approx-
imation theory for thin shell [50] are established as

(2.3)
{
εx, εy, γxy, γxz, γyz

}T
=
{
ε0
x, ε

0
y, γ

0
xy, γ

0
xz, γ

0
yz

}T

+ z
{
kx, ky, kxy, kxz, kyz

}T
,

where the first vector is the mid-surface strain for a hypar shell and the second
vector is the curvature.

2.1. Finite element formulation for shell

An eight-noded curved quadratic isoparametric finite element is used for hy-
par shell analysis. The five degrees of freedom taken into consideration at each
node are u, v, w, α, β. The following expressions establish the relations between
the displacement at any point with respect to the co-ordinates ξ and η and the
nodal degrees of freedom.

(2.4)

u =

8∑
i=1

Niui, v =

8∑
i=1

Nivi, w =

8∑
i=1

Niwi,

α =

8∑
i=1

Niαi, β =

8∑
i=1

Niβi,

where the shape functions derived from a cubic interpolation polynomial [50] are:

(2.5)

Ni = (1 + ξξi)(1 + ηηi)(ξξi + ηηi − 1)/4, for i = 1, 2, 3, 4,

Ni = (1 + ξξi)(1− η2)/2, for i = 5, 7,

Ni = (1 + ηηi)(1− ξ2)/2, for i = 6, 8.
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The generalized displacement vector of an element is expressed in terms of
the shape functions and nodal degrees of freedom as:

(2.6) [u] = [N ]{de},

i.e.

{u} =


u
v
w
α
β

 =

8∑
i=1


Ni

Ni

Ni

Ni

Ni



ui
vi
wi
αi
βi

.

2.1.1. Element stiffness matrix. The strain-displacement relation is given by

(2.7) {ε} = [B]{de},

where

(2.8) [B] =
8∑
i=1



Ni,x 0 0 0 0

0 Ni,y 0 0 0

Ni,y Ni,x −2Ni/Rxy 0 0

0 0 0 Ni,x 0

0 0 0 0 Ni,y

0 0 0 Ni,y Ni,x

0 0 Ni,x Ni 0

0 0 Ni,y 0 Ni


.

The element stiffness matrix is

(2.9) [Ke] =

¨
[B]T[E][B] dx dy.

2.1.2. Element mass matrix. The element mass matrix is obtained from the
integral

(2.10) [Me] =

¨
[N ]T[P ][N ] dx dy,

where

[N ] =

8∑
i=1


Ni 0 0 0 0

0 Ni 0 0 0

0 0 Ni 0 0

0 0 0 Ni 0

0 0 0 0 Ni

, [P ] =

8∑
i=1



P 0 0 0 0

0 P 0 0 0

0 0 P 0 0

0 0 0 I 0

0 0 0 0 I

,
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in which

(2.11) P =

np∑
k=1

zkˆ

zk−1

ρ dz and I =

np∑
k=1

zkˆ

zk−1

zρ dz.

2.2. Finite element formulation for stiffener

Three noded curved isoparametric beam elements (Fig. 2) are used to model
the stiffeners, which are taken to run only along the boundaries of the shell
elements. In the stiffener element, each node has four degrees of freedom i.e. usx,
wsx, αsx and βsx for X-stiffener and vsy, wsy, αsy and βsy for Y -stiffener. The
generalized force-displacement relation of stiffeners can be expressed as:

(2.12)
X-stiffener : {Fsx} = [Dsx] {εsx} = [Dsx] [Bsx] {δsxi},

Y -stiffener : {Fsy} = [Dsy] {εsy} = [Dsy] [Bsy] {δsyi},
where

{Fsx} =
[
Nsxx Msxx Tsxx Qsxxz

]T
,

{εsx} =
[
usx.x αsx.x βsx.x (αsx + wsx.x)

]T
and

{Fsy} =
[
Nsyy Msyy Tsyy Qsyyz

]T
,

{εsy} =
[
vsy.y βsy.y αsy.y (βsy + wsy.y)

]T
.

Fig. 2. a) Eight noded shell element; b) three noded stiffener element:
(i) X-stiffener, (ii) Y -stiffener.

The generalized displacements of the Y -stiffener and the shell are related by
the transformation matrix {δsyi} = [T ] {δ} where

[T ] =


1 +

e

Ry
symmetric

0 1
0 0 1
0 0 0 1

.
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This transformation is required due to curvature of Y -stiffener and {δ} is
the appropriate portion of the displacement vector of the shell excluding the
displacement component along the X-axis.

Elasticity matrices are as follows:

[Dsx] =



A11bsx B′11bsx B′12bsx 0

B′11bsx D′11bsx D′12bsx 0

B′12bsx D′12bsx
1

6
(Q44 +Q66) dsxb

3
sx 0

0 0 0 bsxS11

,

[Dsy] =



A22bsy B′22bsy B′12bsy 0

B′22bsy
1

6
(Q44 +Q66)bsy D′12bsy 0

B′12bsy D′12bsy D′11dsyb
3
sy 0

0 0 0 bsyS22

,

where

(2.13) D′ij = Dij + 2eBij + e2Aij , B′ij = Bij + eAij ,

and Aij , Bij , Dij and Sij are explained in an earlier paper by Sahoo and
Chakravorty [29]. Here, considering the stiffener as moderately thick, the
shear correction factor is taken as 5/6. The sectional parameters are calculated
with respect to the mid-surface of the shell by which the effect of eccentricities
of stiffeners is automatically included. The element stiffness matrices are of the
following forms

(2.14)
for X-stiffener : [Kxe] =

ˆ
[Bsx]T [Dsx] [Bsx] dx,

for Y -stiffener : [Kye] =

ˆ
[Bsy]

T [Dsy] [Bsy] dy.

The integrals are converted to isoparametric co-ordinates and are carried out
by 2-point Gauss quadrature. Finally, the element stiffness matrix of the stiffened
shell is obtained by appropriate matching of the nodes of the stiffener and shell
elements through the connectivity matrix and is given as:

(2.15) [Ke] = [Kshe] + [Kxe] + [Kye] .

The element stiffness matrices are assembled to get the global matrices.
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2.2.1. Element mass matrix. The element mass matrix for shell is obtained
from the integral

(2.16) [Me] =

¨
[N ]T[P ][N ] dx dy,

where

[N ] =
8∑
i=1


Ni 0 0 0 0

0 Ni 0 0 0

0 0 Ni 0 0

0 0 0 Ni 0

0 0 0 0 Ni

, [P ] =
8∑
i=1


P 0 0 0 0

0 P 0 0 0

0 0 P 0 0

0 0 0 I 0

0 0 0 0 I

,

in which

(2.17) P =

np∑
k=1

zkˆ

zk−1

ρ dz and I =

np∑
k=1

zkˆ

zk−1

zρ dz.

Element mass matrix for stiffener element

(2.18)
[Msx] =

¨
[N ]T[P ][N ] dx for X-stiffener,

[Msy] =

¨
[N ]T[P ][N ] dy for Y -stiffener.

Here, [N ] is a 3× 3 diagonal matrix

[P ] =

3∑
i=1



ρbsxdsx 0 0 0

0 ρbsxdsx 0 0

0 0
ρbsxd

2
sx

12
0

0 0 0
ρ(bsxd

3
sx + b3sxdsx)

12


for X-stiffener,

[P ] =
3∑
i=1



ρbsydsy 0 0 0

0 ρbsydsy 0 0

0 0
ρbsyd

2
sy

12
0

0 0 0
ρ(bsyd

3
sy + b3sydsy)

12


for Y -stiffener.
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The mass matrix of the stiffened shell element is the sum of the matrices of
the shell and the stiffeners matched at the appropriate nodes

(2.19) [Me] = [Mshe] + [Mxe] + [Mye] .

The element mass matrices are assembled to get the global matrices.

2.3. Modeling the cut-out

The code developed can take the position and size of cut-out as input.
The program is capable of generating non uniform finite element mesh all over
the shell surface. So the element size is gradually decreased near the cut-out
margins. One such typical mesh arrangement is shown in Fig. 3. Such finite el-
ement mesh is redefined in steps and a particular grid is chosen to obtain the
fundamental frequency when the result does not improve by more than one per-
cent on further refining. Convergence of results is ensured in all the problems
taken up here. In the cut-out region, the mass matrix and stiffness matrix of
the shell elements are considered to be null. The same has been appropriately
implemented in the FE code by considering the thickness of the shell in that
region to be negligible.

Fig. 3. Typical 10× 10 non-uniform mesh arrangement drawn to scale.

2.4. Solution procedure for free vibration analysis

The free vibration analysis involves determination of natural frequencies from
the condition

(2.20)
∣∣[K]− ω2[M ]

∣∣ = 0.

This is a generalized eigen value problem and is solved by the subspace iter-
ation algorithm.
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3. Validation study and numerical problems

The results of Table 1 show that the agreement of present results with the
earlier ones is excellent and the correctness of the stiffener formulation is estab-
lished. Free vibration of simply supported and clamped hypar shell with (0/90)4
shell with cut-outs is also considered. The fundamental frequencies of hypar shell
with cut-out obtained by the present method agree well with those reported by
Chakravorty et al. [21] as evident from Table 2, establishing the correctness
of the cut-out formulation. Thus it is evident that the finite element model pro-
posed here can successfully analyse vibration problems of stiffened skewed hypar
composite shells with cut-out which is reflected by close agreement of present
results with benchmark ones. The present approach uses the improved first order
approximation theory for thin shells [52] considering the radius of cross curva-
ture. For this class of thin shells, a shear correction factor of unity is found to
yield good results. It is observed that the results remain the same when analysis
is repeated with the commonly used shear correction factor of π/

√
12.

Table 1. Natural frequencies [Hz] of centrally stiffened clamped square plate.

Mode no. Mukherjee
and Mukhopadhyay [51]

Nayak and Bandyopadhyay [25]
Present method

N8(FEM) N9(FEM)
1 711.8 725.2 725.1 733

a = b = 0.2032 m, thickness = 0.0013716 m, stiffener depth = 0.0127 m, stiffener width =
0.00635 m, stiffener eccentric at bottom, material property: E = 6.87 ·1010 N/m2, ν = 0.29,
ρ = 2823 kg/m3.

Table 2. Non-dimensional fundamental frequencies (ω) for hypar shells
(lamination (0/90)4) with concentric cut-outs.

a′/a

Chakravorty et al. [21] Present finite element model

Simply supported Clamped
Simply supported Clamped

8× 8 10× 10 12× 12 8× 8 10× 10 12× 12
0.0 50.829 111.600 50.573 50.821 50.825 111.445 111.592 111.612
0.1 50.769 110.166 50.679 50.758 50.779 109.987 110.057 110.233
0.2 50.434 105.464 50.323 50.421 50.400 105.265 105.444 105.443
0.3 49.165 101.350 49.045 49.157 49.178 101.110 101.340 101.490
0.4 47.244 97.987 47.132 47.242 47.141 97.670 97.985 97.991
a/b = 1, a/h = 100, a′/b′ = 1, c/a = 0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22,
ν12 = ν21 = 0.25.

Laminated composite stiffened hypar shells with cut-out is analysed to study
the behaviour of the shell under free vibration at higher mode for different para-
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metric variation. The cut-outs are placed concentrically on the shell surface. The
stiffeners are placed along the cut-out periphery and extended up to the edge
of the shell. The material and geometric properties of the shells are: a/b = 1,
a/h = 100, a′/b′ = 1, a′/a = 0.2, c/a = 0.2, E11/E22 = 25, G23 = 0.2E22,
G13 = G12 = 0.5E22, ν12 = ν21 = 0.25, ρ = 100 N · s2/m4 unless otherwise
specified. Different type of symmetric and antisymmetric cross and angle ply
laminates with different lamination angle is considered.

The different boundary conditions which are used in the present analysis
are CCCC, CCSS, SSCC, CSCS, SCSC, SSSS, CCFF, FFCC and CFCF. The
boundary conditions are designated as: C for clamped, S for simply supported
and F for free edges. The four edges are considered in an anticlockwise order
from the edge x = 0. For example a shell with CSCS boundary is clamped along
x = 0, simply supported along y = 0 and clamped along x = a and simply
supported along y = b. Numerical analyses are also performed to determine the
effect of curvature on non-dimensional frequency by varying c/a = 0.2, 0.15, 0.1,
and 0.05.

4. Results and discussions

4.1. Effect of number and arrangement of boundary constraints on higher mode
frequencies at different lamination stacking sequences

Table 3 presents the non-dimensional frequencies for shells with different
laminations and boundary conditions. To facilitate the interpretation of results
the boundary conditions are divided into three groups. Group I consists of com-
monly encountered edge conditions which are clamped and simply supported.
Each of the boundary conditions included in either of Group II and Group III
has equal number of support constraints. On examining the results it is evi-
dent that the frequencies for all the laminations for first five modes depend on
the number of boundary constraints. With increase in number of boundary con-
straints frequencies increase. Further it is noticed that for two layered laminates
for Group I boundary conditions, angle ply shells show better performance than
cross ply laminates but reverse is the case for Group III shells. For Group II
shells both cross ply and angle ply shells show better performances from 1st to
5th mode. It is also evident from Table 3 that with increase in number of layers
angle ply shells perform better than their cross ply counterpart, except some few
cases. This is true for Group I and Group II shells but for Group III shells except
a very few cases cross ply shells are better choices. These are true for first five
natural modes.

Among Group II boundary conditions, CCSS performs better than CSCS
shells for cross ply shells. For angle ply shells, CCSS shell performs better at 1st
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Table 3. Non-dimensional frequencies ω for different laminations of laminated composite stiff-
ened hypar shell with cut-out for different boundary conditions on higher mode.

θ [◦] Mode
Group I Group II Group III

CCCC SSSS CCSS CSCS CCFF CFCF

0/90

1 98.018 26.637 85.438 49.438 44.250 34.587
2 108.446 26.929 91.838 76.142 52.083 61.940
3 109.370 39.897 93.835 97.696 75.362 71.091
4 119.423 42.461 103.232 102.429 77.192 76.053
5 125.111 57.209 111.447 105.696 79.180 90.241

45/–45

1 120.698 37.986 83.906 49.165 27.561 26.910
2 124.864 38.107 86.901 79.967 31.568 50.815
3 125.550 60.215 93.530 113.990 54.854 54.034
4 142.375 74.380 100.425 119.097 58.839 62.302
5 180.017 96.224 117.059 119.229 66.271 82.723

0/90/0

1 100.702 40.793 87.276 47.510 43.943 22.040
2 109.903 56.046 94.274 66.005 56.146 44.861
3 117.771 57.826 101.721 90.226 73.599 75.056
4 127.017 76.016 105.475 95.401 79.927 75.230
5 127.127 88.721 112.081 108.090 85.013 76.614

45/–45/45

1 142.317 53.814 99.785 72.082 34.008 37.830
2 149.189 55.274 108.133 113.228 37.943 59.124
3 155.431 83.546 109.827 138.565 59.926 62.084
4 159.182 106.898 128.808 143.016 67.858 80.642
5 200.078 129.254 149.427 144.652 74.376 91.550

0/90/0/90

1 101.746 48.701 94.487 65.309 49.317 51.795
2 117.561 48.995 97.755 87.723 59.477 71.901
3 118.346 80.970 101.568 110.525 81.850 78.391
4 134.043 89.063 121.367 115.587 85.988 88.043
5 151.843 103.765 126.195 120.032 87.161 100.779

45/–45/45/–45

1 143.534 54.131 96.560 71.356 31.861 37.875
2 157.273 54.182 113.940 113.115 36.583 62.076
3 158.121 86.637 116.915 145.381 62.488 65.217
4 165.640 106.252 127.234 146.878 68.768 83.822
5 216.514 135.294 155.055 150.707 77.731 100.095

0/90/0/90/0

1 102.336 45.490 94.328 57.234 48.607 38.823
2 114.740 55.612 97.220 82.655 59.331 65.989
3 125.389 74.322 105.417 109.061 81.196 78.763
4 138.143 91.929 116.855 113.620 83.160 83.759
5 138.925 105.747 124.153 114.241 91.756 93.516
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and 2nd modes, but the reverse is the case for 3rd to 5th modes. A more careful
observation suggests that among Group III shells when numbers of layers are
less CCFF performs better but with increase in number of layers performance of
CFCF shells are improved. Hence lamination order may influence the frequency
of stiffened composite shell with cut-out more significantly than its boundary
conditions.

The typical mode shapes corresponding to the first five modes of vibration are
plotted in Fig. 4 for cross ply and angle ply shells respectively. The normalized

Fig. 4. Mode shapes for cross ply and angle ply shells for different boundary conditions
for first five modes.
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displacements are drawn with the shell mid-surface as the reference for all the
support condition and for all the lamination used here. The fundamental mode
is clearly a bending mode for all the boundary condition for cross ply and angle
ply shell. At higher modes of vibration, mode shapes do not change to a great
extent. Most of the mode shapes are in bending mode. It is found that for first
five modes, nature of the mode shapes is somewhat similar, only the crest and
trough position changes.

4.2. Effect of lamination angle on symmetrically laminated shells

Table 4 contains the non-dimensional frequency values for different symmet-
ric laminates by varying the lamination angle and boundary conditions. It is
observed from the results, with the increase in number of layers frequencies in-
crease marginally from three layered to four layered shells. But with further
increase in number of layers does not come to any effective benefit except CSCS
and CFCF shells. This is expected as increasing the number of layers will result
in reduced bending-stretching coupling and will increase the shell stiffness, till
on increasing the number of layers the material becomes quasi-isotropic. Beyond
that, increase in the number of layers will not improve the frequency to any ex-
tent. Rather, (0/θ)s lamination exhibit reasonably good performance and may
be adopted for all practical purposes. It is also observed that except for CCCC
shells, where θ = 45◦ yields the highest values of frequency but for all other

Table 4. Non-dimensional ω frequencies for symmetric laminated composite stiffened hypar
shell with cut-out with different boundary condition.

Boundary Condition θ [◦] (0/θ/0) (0/θ)S (0/θ/0)S [(0/θ)2]S

CCCC

0 92.874 93.093 93.526 93.093
15 110.434 114.779 112.219 115.791
30 120.993 122.546 123.193 123.201
45 121.153 122.941 124.570 124.686
60 117.064 118.771 121.600 121.632
75 111.024 113.132 117.109 116.898
90 100.702 102.030 102.571 102.587

CCSS

0 81.037 81.437 82.220 81.437
15 84.473 85.188 86.148 85.424
30 87.443 88.284 89.642 88.863
45 88.839 89.657 91.149 90.260
60 89.033 89.950 91.663 90.757
75 87.885 89.911 92.831 91.997
90 87.276 90.964 95.544 95.333
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Table 4. [Cont.]

Boundary Condition θ [◦] (0/θ/0) (0/θ)S (0/θ/0)S [(0/θ)2]S

CSCS

0 39.747 39.935 40.302 39.939
15 43.082 43.983 44.378 44.507
30 47.388 49.570 50.896 51.678
45 50.529 54.464 57.362 59.018
60 52.420 58.216 62.162 64.869
75 50.642 57.051 62.272 65.107
90 47.510 53.208 60.222 62.180

SSSS

0 32.418 32.543 32.837 32.547
15 34.688 35.396 35.853 35.964
30 37.607 39.215 40.577 41.047
45 39.729 42.274 44.529 45.304
60 41.439 44.707 47.165 48.213
75 41.779 45.213 47.682 48.892
90 40.793 43.804 46.898 47.958

CCFF

0 29.312 29.409 29.596 29.413
15 29.948 30.167 30.551 30.419
30 31.211 31.548 32.023 31.936
45 33.377 33.876 34.284 34.270
60 37.124 37.918 38.165 38.315
75 42.187 43.812 44.531 45.191
90 43.943 45.859 49.123 49.343

CFCF

0 16.299 16.419 16.797 16.426
15 16.320 16.558 17.036 16.765
30 16.670 17.841 19.477 19.572
45 17.877 21.341 25.710 26.560
60 19.715 26.198 33.831 35.551
75 21.358 30.343 40.613 43.025
90 22.040 31.967 43.256 45.952

boundary conditions frequency increases with θ. For CCSS and CSCS shells
θ = 60◦ either gives the highest frequency or yields a frequency value which is
marginally less than the highest one. Similarly for SSSS shells θ = 75◦ and for
CCFF and CFCF shells θ = 90◦ gives the highest results.

Figure 5 represents the typical mode shapes corresponding to symmetric cross
ply and angle ply laminated composite stiffened shells with cut-out for first five
natural modes.
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Fig. 5. Mode shapes for symmetric cross ply and angle ply shells with cut-out
for first five modes.

4.3. Effect of lamination angle between symmetric and antisymmetric
laminations on higher mode frequencies

The frequencies of four layered symmetric and antisymmetric laminates are
furnished in Table 5 for various lamination angles and boundary conditions.
Since four layered laminates are very common in industrial applications, Table 5
is expected to be a good design aid for practicing engineers. Examining the fre-
quencies of shells with four layered symmetric and antisymmetric stacking orders
presented in Table 5, it is found that for CFCF shells with 0/θ/0/θ stacking or-
der the vibrational stiffness increase monotonically with θ. But for CCCC, CSCS
and SSSS and 0/θ/θ/0 shells, the frequency increases with θ upto a certain value
but decreases when θ is further increased. Such decreases are quite marginal in
all of these cases. All these observations are true for the first five modes shown
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Table 5. Non-dimensional frequencies ω for composite stiffened hypar shell with cut-out with
0/θ/0/θ and 0/θ/θ/0 lamination scheme and different boundary conditions on higher mode.

θ [◦] Mode
Boundary condition

CCCC CSCS SSSS CFCF
0/θ/0/θ 0/θ/θ/0 0/θ/0/θ 0/θ/θ/0 0/θ/0/θ 0/θ/θ/0 0/θ/0/θ 0/θ/θ/0

0

1 93.093 93.093 39.935 39.935 32.543 32.543 16.419 16.419
2 106.371 106.371 55.034 55.034 48.270 48.270 33.066 33.066
3 109.995 109.995 73.047 73.047 56.092 56.092 48.250 48.250
4 110.260 110.260 87.515 87.515 62.595 62.595 48.520 48.520
5 116.956 116.956 95.965 95.965 84.479 84.479 56.071 56.071

15

1 111.960 114.779 45.478 43.983 36.699 35.396 16.844 16.558
2 115.687 116.295 61.772 59.971 54.530 52.559 34.766 33.921
3 128.878 130.301 81.674 78.304 56.864 57.909 50.135 50.021
4 130.427 133.877 100.026 101.648 71.059 67.853 52.497 51.119
5 140.496 142.419 102.962 106.987 92.798 94.828 57.662 56.664

30

1 118.349 122.546 53.234 49.570 42.253 39.215 20.373 17.841
2 132.432 129.103 75.344 67.956 58.233 58.848 41.158 36.867
3 146.421 140.195 101.662 88.629 64.897 59.485 55.465 53.783
4 148.276 152.635 118.461 116.438 87.613 76.774 56.016 55.531
5 160.833 161.266 122.698 122.225 105.810 103.934 69.109 61.080

45

1 121.010 122.941 61.578 54.464 46.469 42.274 28.739 21.341
2 136.675 130.152 92.408 76.412 57.809 59.411 52.006 43.288
3 156.322 140.900 125.669 100.876 75.658 64.370 60.782 60.975
4 156.944 159.237 128.633 125.125 102.074 85.970 67.482 61.683
5 166.305 171.106 133.669 132.857 108.272 106.353 85.023 72.540

60

1 119.538 118.771 68.120 58.216 48.447 44.707 39.328 26.198
2 136.911 126.372 106.292 83.176 56.160 58.318 63.872 52.105
3 151.622 141.852 123.653 111.838 84.490 68.661 68.950 71.193
4 163.179 158.797 138.385 123.093 93.730 93.617 84.106 71.841
5 165.697 161.590 149.906 137.592 119.474 102.556 91.687 85.248

75

1 116.354 113.132 68.504 57.051 48.332 45.213 48.283 30.343
2 124.902 119.546 106.126 83.470 53.117 56.868 74.826 59.516
3 138.661 140.262 117.868 115.616 84.436 69.285 79.476 82.918
4 148.999 143.832 131.935 118.242 89.881 95.616 96.764 82.980
5 155.419 145.424 132.464 126.783 108.352 97.490 97.422 89.354

90

1 101.746 102.030 65.309 53.208 48.701 43.804 51.795 31.967
2 117.561 111.696 87.723 77.722 48.995 56.080 71.901 60.044
3 118.346 127.711 110.525 102.523 80.970 68.019 78.391 80.826
4 134.043 128.893 115.587 111.379 89.063 90.758 88.043 82.361
5 151.843 138.257 120.032 114.690 103.765 98.610 100.779 89.747
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here except very few cases. In some cases considered here (for CFCF shells with
0/θ/0/θ) highest frequencies are found to be at θ = 90◦. In other cases highest
frequencies are found to be at θ = 60◦.

When performances of antisymmetric and symmetric laminates are com-
pared, it is found that considering all the modes performance of antisymmet-
ric laminate is better than its symmetric counterpart. The only exception is
symmetrically laminated CCCC shell with lamination angle 15◦. For this shell
symmetric laminate perform better than the antisymmetric laminate in all five
modes shown here.

Figure 6 represents the typical mode shapes corresponding to symmetric and
anti-symmetric cross ply and angle ply laminated composite stiffened shells with
cut-out for first five natural modes.

Fig. 6. Mode shapes corresponding to anti symmetric and symmetric laminated composite
stiffened hypar shell with cut-out for different boundary conditions for first five modes.

4.4. Effect of curvature on higher mode frequencies

The frequencies of 0/θ/θ/0 laminates are presented in Table 6 for various
lamination angles with different c/a ratio for CCSS boundary condition. It is
observed in general that frequency of each mode first increases with lamination
angle then decrease for all c/a ratios. From Table 6 it is also observed that
for CCSS boundary condition for a given lamination angle increase in c/a ratio
increases the frequency of each mode.
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Table 6. Non-dimensional frequencies ω for 0/θ/θ/0 stiffened hypar shell with cut-out with
different c/a ratio for CCSS boundary condition on higher mode.

θ [◦] Mode
c/a

0.2 0.15 0.1 0.05

0

1 81.437 68.926 50.845 33.025
2 84.595 70.089 52.940 36.752
3 88.777 77.733 62.553 50.804
4 95.973 80.442 74.440 66.119
5 103.540 87.336 75.331 71.641

15

1 85.188 76.139 60.664 38.424
2 90.133 80.995 61.326 41.498
3 99.544 82.078 73.217 55.059
4 112.599 94.783 77.307 69.290
5 119.977 102.417 82.645 72.224

30

1 88.284 80.280 67.962 47.013
2 97.437 87.112 71.727 48.636
3 108.153 91.259 79.937 61.777
4 125.869 112.832 90.117 73.096
5 135.310 116.351 93.836 76.124

45

1 89.657 80.509 68.059 47.720
2 102.168 89.685 75.140 52.607
3 111.560 97.278 83.203 65.001
4 127.559 112.103 92.107 74.601
5 141.559 125.170 101.364 83.599

60

1 89.950 78.548 63.700 43.078
2 102.446 88.382 71.985 49.824
3 113.423 97.166 80.544 68.703
4 121.051 108.805 95.209 75.920
5 143.545 122.901 100.398 83.882

75

1 89.911 75.713 58.137 37.119
2 99.165 81.321 62.024 45.068
3 110.513 94.973 81.766 71.083
4 117.273 102.476 85.903 74.848
5 127.497 110.154 93.761 80.592

90

1 90.964 74.507 54.050 34.489
2 96.054 75.982 58.420 44.005
3 107.634 92.748 79.692 70.108
4 108.858 95.015 83.706 75.919
5 123.965 105.420 89.772 79.067
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Figure 7 represents the typical mode shapes corresponding to fundamental
and first five modes for symmetric angle ply laminated composite stiffened shells
with cut-out for different c/a ratio.

Fig. 7. Mode shapes corresponding to 0/45/45/0 laminated composite stiffened hypar shell
with cut-out for CCSS boundary conditions for different c/a ratio for first five modes.

5. Conclusions

The following conclusions are drawn from the present study
1) As this approach produces results in close agreement with those of the

benchmark problems, the finite element code used here is suitable for
analysing the characteristics of vibrating stiffened composite hypars with
cut-outs. The present study reveals that cut-outs with stiffened margins
may always safely be provided on shell surfaces for functional requirements.

2) In general fundamental frequency increases with the increase in the number
of support constraints. There are, however, few departures from this general
tendency when two shells of different laminations are compared. Sometimes
lamination order influences the frequency of stiffened composite shell with
cut-out more significantly than its boundary conditions.

3) (0/θ)s lamination exhibit reasonably good performance and may be adopted
for all practical purposes.

4) For four layered laminates the frequency either increases monotonically
with θ or increases with θ only up to a certain value of θ. For CCCC,
CSCS, SSSS and 0/θ/θ/0 CCSS shells, the frequency increases with θ up
to a certain value, but decreases when θ is further increased. For each of
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these shells the values of θ yielding highest frequencies are to be found out
by numerical experimentation. All these observations are true for the first
five modes except very few cases.

5) Considering all the modes performance of four layered antisymmetric lam-
inate is better than its symmetric counterpart, except CCCC shell with
lamination angle 15◦.

6) For shell with CCSS boundary condition, for a given lamination angle,
frequency of each mode increases with increase in c/a ratio.
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